Dynamics of functional impairments during focal transient ischemia in three-dimensional cortical space

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Ischemic injury in the cerebral cortex results in decreased electrical activity across all frequency bands and the emergence of abnormal electrophysiological patterns, including spreading depolarization (SD) and negative ultraslow potential (NUP) [1, 2]. Despite this, the specific dynamics of these changes in electrical activity within the three-dimensional cortical space during ischemia remain incompletely described and poorly understood.

To simultaneously investigate changes in electrical activity across the layers of the cerebral cortex and in the horizontal cortical space, we used two linear 16-channel silicone probes (Neuronexus, USA) in combination with a flexible transparent 60-channel matrix of subdural electrodes (MIPT, Russia) and intrinsic optical signal imaging (IOS, 665 nm, transillumination mode) during focal ischemia induced by intracortical injection of the potent vasoconstrictor endothelin-1 (ET-1, 1 μL, 1 μM). These experiments were carried out in head-restrained rats under urethane anesthesia (1.5 g/kg).

Formation of the ischemic lesion following ET-1 administration was correlated with clusters of SDs that demonstrated considerable variability in their propagation patterns within both vertical and horizontal planes. The initial SDs originated from the injection site of ET-1 and diffused across all cortical layers. Subsequently, the initiation point of the ensuing SDs gradually shifted towards the deeper layers while the electrical activity showed inadequate recovery between SDs within the injection site. SDs originating in the surrounding cortex did not invade the area near the injection point. Instead, they tended to spread around, often compartmentalizing in the superficial layers of the cortex. Some SDs were observed deep in the cortex, while others were detected on the surface via superficial electrodes and IOS, without leaving typical intracortical electrode traces. Electrographic activity was significantly depressed, especially in the superficial layers around the injection site, three hours after ET-1 administration. However, it returned to pre-ET-1 levels at the remote site, with a spatial gradient observed in subdural electrodes. Functional impairments corresponded to the histological lesion observed in coronal brain sections. Recently discovered NUPs were initiated by SD and were most prominent in the electrodes closest to the ET-1 injection site. These NUPs reached their maximal amplitude at one hour and subsided three hours after ET-1 injection.

Our research indicates intricate dynamics in the creation of an ischemic focal point. The data gathered suggest that the emergence of cerebral harm during focal ischemia is associated with the growth of a focus extending both horizontally and vertically across cortical dimensions. This growth is fueled by the generation of SDs within the ischemic penumbra.

全文:

Ischemic injury in the cerebral cortex results in decreased electrical activity across all frequency bands and the emergence of abnormal electrophysiological patterns, including spreading depolarization (SD) and negative ultraslow potential (NUP) [1, 2]. Despite this, the specific dynamics of these changes in electrical activity within the three-dimensional cortical space during ischemia remain incompletely described and poorly understood.

To simultaneously investigate changes in electrical activity across the layers of the cerebral cortex and in the horizontal cortical space, we used two linear 16-channel silicone probes (Neuronexus, USA) in combination with a flexible transparent 60-channel matrix of subdural electrodes (MIPT, Russia) and intrinsic optical signal imaging (IOS, 665 nm, transillumination mode) during focal ischemia induced by intracortical injection of the potent vasoconstrictor endothelin-1 (ET-1, 1 μL, 1 μM). These experiments were carried out in head-restrained rats under urethane anesthesia (1.5 g/kg).

Formation of the ischemic lesion following ET-1 administration was correlated with clusters of SDs that demonstrated considerable variability in their propagation patterns within both vertical and horizontal planes. The initial SDs originated from the injection site of ET-1 and diffused across all cortical layers. Subsequently, the initiation point of the ensuing SDs gradually shifted towards the deeper layers while the electrical activity showed inadequate recovery between SDs within the injection site. SDs originating in the surrounding cortex did not invade the area near the injection point. Instead, they tended to spread around, often compartmentalizing in the superficial layers of the cortex. Some SDs were observed deep in the cortex, while others were detected on the surface via superficial electrodes and IOS, without leaving typical intracortical electrode traces. Electrographic activity was significantly depressed, especially in the superficial layers around the injection site, three hours after ET-1 administration. However, it returned to pre-ET-1 levels at the remote site, with a spatial gradient observed in subdural electrodes. Functional impairments corresponded to the histological lesion observed in coronal brain sections. Recently discovered NUPs were initiated by SD and were most prominent in the electrodes closest to the ET-1 injection site. These NUPs reached their maximal amplitude at one hour and subsided three hours after ET-1 injection.

Our research indicates intricate dynamics in the creation of an ischemic focal point. The data gathered suggest that the emergence of cerebral harm during focal ischemia is associated with the growth of a focus extending both horizontally and vertically across cortical dimensions. This growth is fueled by the generation of SDs within the ischemic penumbra.

ADDITIONAL INFORMATION

Funding sources. This work was supported by Russian Science Fundation (grant No. 22-15-00236).

×

作者简介

D. Vinokurova

Kazan Federal University

编辑信件的主要联系方式.
Email: AnVZaharov@kpfu.ru
俄罗斯联邦, Kazan

A. Zakharov

Kazan Federal University; Kazan State Medical University

Email: AnVZaharov@kpfu.ru
俄罗斯联邦, Kazan; Kazan

B. Mingazov

Kazan Federal University

Email: AnVZaharov@kpfu.ru
俄罗斯联邦, Kazan

R. Khazipov

INMED, Aix-Marseille University

Email: AnVZaharov@kpfu.ru
法国, Marseille

参考

  1. Dreier JP, Reiffurth C. The stroke-migraine depolarization continuum. Neuron. 2015;86(4):902–922. doi: 10.1016/j.neuron.2015.04.004
  2. Vinokurova D, Zakharov A, Chernova K, et al. Depth-profile of impairments in endothelin-1 – induced focal cortical ischemia. J. Cereb. Blood Flow Metab. 2022;42(10):1944–1960. doi: 10.1177/0271678X221107422

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».