Searching for cognitive specializations of neurons using mutual information framework

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Of particular interest for researching the cognitive specializations of neurons is their correlation with environmental variables and animal behavior. Mutual information (MI) is a preferable method for measuring such correlations, as it allows for the assessment of non-linear relationships between variables, detects synchronization, and provides both significance and strength quantification. However, calculating MI for real data is significantly challenging. In this study, we used updated MI calculation techniques to analyze the connection between calcium fluorescence signaling and behavioral variables. Our approach encompasses novel strategies which we compiled into a software program known as INTENS (Information-Theoretic Evaluation of Neuronal Specializations), and it enabled to identify specialized neurons in mice hippocampal calcium activity data while they explored the arena with varying levels of novelty.

Numerous methods exist for analyzing the relationship between neuron spikes and behavioral variables, including information-theoretical approaches [1]. Extracting information about the relationship between calcium fluorescent signals and behavior is of particular interest due to the signal’s ability to provide crucial information about subthreshold activations of the neuron. In this study, we use the GCMI Gaussian copula entropy method to calculate mutual information [2]. This method relies on the fact that mutual information between two random variables is independent of their marginal distributions and only depends on the type of copula used (a multidimensional distribution where each marginal distribution is uniform).

The actual MI was compared to its corresponding values computed on the time-shifted signals for assessing the statistical significance of the computed information association between the calcium signal and the behavioral variable. Additionally, we devised a technique for gauging the strength of the coupling effect. This involved normalizing the mutual information between the fluorescence signal and the behavior with the entropy value of both variables, previously calculated as random variables. Importantly, the approach outlined earlier is effective for analyzing continuous variables such as calcium signal and animal speed, as well as pairs of continuous and discrete variables such as calcium signal and the presence or absence of grooming.

The analysis of calcium signals recorded from the CA1 region of the hippocampus revealed neuronal specializations related to the animal’s external environment, such as place cells, and specializations related to its behavioral activities, including neurons activated during running, rearing, and freezing. Some neurons selectively activated in response to discrete parameters included the animal’s location within the arena (center, walls, and corners) and its speed (rest, slow, and fast). A total of 781 specializations were detected across 472 neurons throughout all four sessions of the experiment. Notably, a single neuron could have several specializations. However, more than half (55%) of the neurons were found to have only one specialization.

Full Text

Of particular interest for researching the cognitive specializations of neurons is their correlation with environmental variables and animal behavior. Mutual information (MI) is a preferable method for measuring such correlations, as it allows for the assessment of non-linear relationships between variables, detects synchronization, and provides both significance and strength quantification. However, calculating MI for real data is significantly challenging. In this study, we used updated MI calculation techniques to analyze the connection between calcium fluorescence signaling and behavioral variables. Our approach encompasses novel strategies which we compiled into a software program known as INTENS (Information-Theoretic Evaluation of Neuronal Specializations), and it enabled to identify specialized neurons in mice hippocampal calcium activity data while they explored the arena with varying levels of novelty.

Numerous methods exist for analyzing the relationship between neuron spikes and behavioral variables, including information-theoretical approaches [1]. Extracting information about the relationship between calcium fluorescent signals and behavior is of particular interest due to the signal’s ability to provide crucial information about subthreshold activations of the neuron. In this study, we use the GCMI Gaussian copula entropy method to calculate mutual information [2]. This method relies on the fact that mutual information between two random variables is independent of their marginal distributions and only depends on the type of copula used (a multidimensional distribution where each marginal distribution is uniform).

The actual MI was compared to its corresponding values computed on the time-shifted signals for assessing the statistical significance of the computed information association between the calcium signal and the behavioral variable. Additionally, we devised a technique for gauging the strength of the coupling effect. This involved normalizing the mutual information between the fluorescence signal and the behavior with the entropy value of both variables, previously calculated as random variables. Importantly, the approach outlined earlier is effective for analyzing continuous variables such as calcium signal and animal speed, as well as pairs of continuous and discrete variables such as calcium signal and the presence or absence of grooming.

The analysis of calcium signals recorded from the CA1 region of the hippocampus revealed neuronal specializations related to the animal’s external environment, such as place cells, and specializations related to its behavioral activities, including neurons activated during running, rearing, and freezing. Some neurons selectively activated in response to discrete parameters included the animal’s location within the arena (center, walls, and corners) and its speed (rest, slow, and fast). A total of 781 specializations were detected across 472 neurons throughout all four sessions of the experiment. Notably, a single neuron could have several specializations. However, more than half (55%) of the neurons were found to have only one specialization.

ADDITIONAL INFORMATION

Authors’ contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

Funding sources. The research was supported by the Non-Commercial Foundation for Support of Science and Education “INTELLECT”.

Competing interests. The authors declare that they have no competing interests.

×

About the authors

N. A. Pospelov

Institute for Advanced Brain Studies, Lomonosov Moscow State University

Author for correspondence.
Email: nik-pos@yandex.ru
Russian Federation, Moscow

V. P. Sotskov

Institute for Advanced Brain Studies, Lomonosov Moscow State University

Email: nik-pos@yandex.ru
Russian Federation, Moscow

V. V. Plusnin

Institute for Advanced Brain Studies, Lomonosov Moscow State University

Email: nik-pos@yandex.ru
Russian Federation, Moscow

O. S. Rogozhnikova

Institute for Advanced Brain Studies, Lomonosov Moscow State University

Email: nik-pos@yandex.ru
Russian Federation, Moscow

K. A. Toropova

Institute for Advanced Brain Studies, Lomonosov Moscow State University

Email: nik-pos@yandex.ru
Russian Federation, Moscow

O. I. Ivashkina

Institute for Advanced Brain Studies, Lomonosov Moscow State University

Email: nik-pos@yandex.ru
Russian Federation, Moscow

K. V. Anokhin

Institute for Advanced Brain Studies, Lomonosov Moscow State University

Email: nik-pos@yandex.ru
Russian Federation, Moscow

References

  1. Strong SP, de Ruyter van Steveninck RR, Bialek W, Koberle R. On the application of information theory to neural spike trains. Pac Symp Biocomput. 1998;621–632.
  2. Ince RA, Giordano BL, Kayser C, et al. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula. Hum Brain Mapp. 2017;38(3):1541–1573. doi: 10.1002/hbm.23471

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».