Paracrine effects of mesenchymal stem cells: future perspectives
- Авторлар: Alkhateeb R.1, Turchaninova E.A.1, Kononova D.V.1, Robustova S.D.1, Dolgodvorova A.A.1, Tsvelaya V.A.1,2,3, Agladze K.I.1,2
-
Мекемелер:
- Moscow Institute of Physics and Technology
- Moscow Regional Research and Clinical Institute
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics
- Шығарылым: Том 20, № 3 (2025)
- Беттер: 178-193
- Бөлім: Reviews
- URL: https://journal-vniispk.ru/2313-1829/article/view/320348
- DOI: https://doi.org/10.17816/gc642935
- EDN: https://elibrary.ru/EZGWBI
- ID: 320348
Дәйексөз келтіру
Аннотация
Mesenchymal stem cells are a cell population with the ability to self-replicate and differentiate into various types of somatic cells. The present review focuses on the potential of mesenchymal stem cell cultures for cell therapy using transplantable cells or tissue-engineered constructs, and the paracrine factors secreted by mesenchymal stem cells. The methodological aspects of the use of these cells in various diseases both in clinical and preclinical trials have been demonstrated through examples of experimental therapy, with an overview of their primary mechanisms.
In the context of cell therapy, mesenchymal stem cells are of significant interest because of their abundance and renewability. Although the differentiation pathways of mesenchymal stem cells are not yet fully elucidated, the cells themselves play a pivotal role in stem cell biology in view of their regulatory properties, including immunomodulatory, antiapoptotic, proliferation-promoting, and antifibrotic effects. It is important to emphasize that the paracrine functions of mesenchymal stem cells are the primary factor contributing to their enhanced integration into tissues, when compared to induced pluripotent stem cells, particularly in the context of cardiac tissue engineering. The review also highlights the role of exogenous factors, such as substrates, in modulating the efficacy of the paracrine effects of mesenchymal stem cells, which is crucial for identifying the optimal cellular microenvironment to enhance therapeutic outcomes without adverse effects.
Негізгі сөздер
Толық мәтін
##article.viewOnOriginalSite##Авторлар туралы
Rose Alkhateeb
Moscow Institute of Physics and Technology
Email: rosskhati75@gmail.com
ORCID iD: 0009-0002-0533-8142
Ресей, Dolgoprudny
Elena Turchaninova
Moscow Institute of Physics and Technology
Хат алмасуға жауапты Автор.
Email: turchaninova.ea@phystech.edu
ORCID iD: 0009-0003-8165-2595
SPIN-код: 4964-2332
Ресей, Dolgoprudny
Daria Kononova
Moscow Institute of Physics and Technology
Email: kononova.dv@phystech.edu
ORCID iD: 0009-0002-7631-2126
Ресей, Dolgoprudny
Sofya Robustova
Moscow Institute of Physics and Technology
Email: robustova.sd@phystech.edu
ORCID iD: 0009-0004-5744-2325
SPIN-код: 7133-9288
Ресей, Dolgoprudny
Aleria Dolgodvorova
Moscow Institute of Physics and Technology
Email: aitova.aa@phystech.edu
ORCID iD: 0000-0003-2460-088X
Ресей, Dolgoprudny
Valeria Tsvelaya
Moscow Institute of Physics and Technology; Moscow Regional Research and Clinical Institute; Saint Petersburg National Research University of Information Technologies, Mechanics and Optics
Email: vts93@yandex.ru
ORCID iD: 0000-0002-3554-9736
SPIN-код: 7553-1038
Cand. Sci. (Biology)
Ресей, Dolgoprudny; Moscow; Saint PetersburgKonstantin Agladze
Moscow Institute of Physics and Technology; Moscow Regional Research and Clinical Institute
Email: agladze@yahoo.com
ORCID iD: 0000-0002-9258-436X
SPIN-код: 6960-8351
Dr. Sci. (Biology)
Ресей, Dolgoprudny; MoscowӘдебиет тізімі
- Вoss MX, Sachinidis A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells. 2019;8(5):403. doi: 10.3390/cells8050403 EDN: GHLGRP
- Qiao Y, Agboola OS, Hu X, et al. Tumorigenic and immunogenic properties of induced pluripotent stem cells: a promising cancer vaccine. Stem Cell Rev Rep. 2020;16(6):1049–1061. doi: 10.1007/s12015-020-10042-5 EDN: MRNWJG
- Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x EDN: KTFJMT
- Friedenstein AJ. Osteogenic stem cells in bone marrow. In: Heersche JNM, Kanis JA, editors. Bone and mineral research. The Netherlands: Elsevier Science Publishers; 1990. P. 243–272.
- Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone. 1992;13(1):81–88. doi: 10.1016/8756-3282(92)90364-3
- Li P, Ou Q, Shi S, Shao C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol Immunol. 2023;20(6):558–569. doi: 10.1038/s41423-023-00998-y EDN: YDSXDI
- Taechangam N, Kol A, Arzi B, Borjesson DL. Multipotent stromal cells and viral interaction: current implications for therapy. Stem Cell Rev Rep. 2022;18(1):214–227. doi: 10.1007/s12015-021-10224-9 EDN: XSVUFE
- Stanko P, Kaiserova K, Altanerova V, Altaner C. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(3):373–377. doi: 10.5507/bp.2013.078
- Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–319. doi: 10.1016/j.stem.2008.03.002 EDN: XVWRXL
- Pittenger MF, Discher DE, Péault BM, et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. doi: 10.1038/s41536-019-0083-6 EDN: MXZCWM
- Kadri N, Amu S, Iacobaeus E, et al. Current perspectives on mesenchymal stromal cell therapy for graft versus host disease. Cell Mol Immunol. 2023;20(6):613–625. doi: 10.1038/s41423-023-01022-z EDN: GZIPBT
- Weatherall EL, Avilkina V, Cortes-Araya Y, et al. Differentiation potential of mesenchymal stem/stromal cells is altered by intrauterine growth restriction. Front Vet Sci. 2020;7:558905. doi: 10.3389/fvets.2020.558905 EDN: SEUBAE
- Kariminekoo S, Movassaghpour A, Rahimzadeh A, et al. Implications of mesenchymal stem cells in regenerative medicine. Artif Cells Nanomed Biotechnol. 2016;44(3):749–757. doi: 10.3109/21691401.2015.1129620
- Liang X, Ding Y, Zhang Y, et al. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045–1059. doi: 10.3727/096368913X667709 EDN: UQXCMB
- Li TT, Wang ZR, Yao WQ, et al. Stem cell therapies for chronic liver diseases: progress and challenges. Stem Cells Transl Med. 2022;11(9):900–911. doi: 10.1093/stcltm/szac053 EDN: SILAUU
- Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76. doi: 10.1186/scrt465 EDN: TLHBKA
- El-Ansary M, Abdel-Aziz I, Mogawer S, et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev Rep. 2012;8(3):972–981. doi: 10.1007/s12015-011-9322-y EDN: IFMKKR
- Margiana R, Markov A, Zekiy AO, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022;13(1):366. doi: 10.1186/s13287-022-03054-0 EDN: IJSYMG
- Suk KT, Yoon JH, Kim MY, et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology. 2016;64(6):2185–2197. doi: 10.1002/hep.28693
- Eom YW, Shim KY, Baik SK. Mesenchymal stem cell therapy for liver fibrosis. Korean J Intern Med. 2015;30(5):580–589. doi: 10.3904/kjim.2015.30.5.580 EDN: XTQDOJ
- Usunier B, Benderitter M, Tamarat R, Chapel A. Management of fibrosis: the mesenchymal stromal cells breakthrough. Stem Cells Int. 2014;2014:340257. doi: 10.1155/2014/340257
- Ikegame Y, Yamashita K, Hayashi S, et al. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy. 2011;13(6):675–685. doi: 10.3109/14653249.2010.549122
- Dabrowski FA, Burdzinska A, Kulesza A, et al. Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue. J Obstet Gynaecol Res. 2017;43(11):1758–1768. doi: 10.1111/jog.13432
- Han Y, Li X, Zhang Y, et al. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886. doi: 10.3390/cells8080886 EDN: BJUVFT
- Lim HC, Park YB, Ha CW, et al. Allogeneic umbilical cord blood-derived mesenchymal stem cell implantation versus microfracture for large, full-thickness cartilage defects in older patients: a multicenter randomized clinical trial and extended 5-year clinical follow-up. Orthop J Sports Med. 2021;9(1):2325967120973052. doi: 10.1177/2325967120973052 EDN: YINEWF
- Katagiri W, Watanabe J, Toyama N, et al. Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation. Implant Dent. 2017;26(4):607–612. doi: 10.1097/ID.0000000000000618
- Jovic D, Yu Y, Wang D, et al. A brief overview of global trends in MSC-based cell therapy. Stem Cell Rev Rep. 2022;18(5):1525–1545. doi: 10.1007/s12015-022-10369-1 EDN: RFJIWE
- Petrou P, Gothelf Y, Argov Z, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 2016;73(3):337–344. doi: 10.1001/jamaneurol.2015.4321
- Jung JW, Kwon M, Choi JC, et al. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med J. 2013;54(5):1293–1296. doi: 10.3349/ymj.2013.54.5.1293
- Lim JY, Jeong CH, Jun JA, et al. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia. Stem Cell Res Ther. 2011;2(5):38. doi: 10.1186/scrt79 EDN: SDUJNG
- Chen SL, Fang WW, Qian J, et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J (Engl). 2004;117(10):1443–1448. Erratum in: Chin Med J (Engl). 2005 Jan 5;118(1):88.
- Rigol M, Solanes N, Roura S, et al. Allogeneic adipose stem cell therapy in acute myocardial infarction. Eur J Clin Invest. 2014;44(1):83–92. doi: 10.1111/eci.12195
- Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93–98. doi: 10.1161/hc0102.101442
- Sid-Otmane C, Perrault LP, Ly HQ. Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes. J Transl Med. 2020;18(1):336. doi: 10.1186/s12967-020-02504-8 EDN: NGPOPB
- Teng X, Chen L, Chen W, et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem. 2015;37(6):2415–2424. doi: 10.1159/000438594
- Feng Y, Huang W, Wani M, et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One. 2014;9(2):e88685. doi: 10.1371/journal.pone.0088685
- Perin EC, Sanz-Ruiz R, Sánchez PL, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J. 2014;168(1):88–95.e2. doi: 10.1016/j.ahj.2014.03.022 EDN: USQEZB
- Swaminathan M, Kopyt N, Atta MG, et al. Pharmacological effects of ex vivo mesenchymal stem cell immunotherapy in patients with acute kidney injury and underlying systemic inflammation. Stem Cells Transl Med. 2021;10(12):1588–1601. doi: 10.1002/sctm.21-0043 EDN: GXFJZQ
- Fernández-Garza LE, Barrera-Barrera SA, Barrera-Saldaña HA. Mesenchymal stem cell therapies approved by regulatory agencies around the world. Pharmaceuticals (Basel). 2023;16(9):1334. doi: 10.3390/ph16091334 EDN: KNPGXA
- Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002;99(13):8932–8937. doi: 10.1073/pnas.132252399
- Koh RH, Jin Y, Kang BJ, Hwang NS. Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs. Acta Biomater. 2017;53:318–328. doi: 10.1016/j.actbio.2017.01.081
- Kim HJ, Seo SW, Chang JW, et al. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase 1 clinical trial. Alzheimers Dement (N Y). 2015;1(2):95–102. doi: 10.1016/j.trci.2015.06.007
- Sun Z, Gu P, Xu H, et al. Human umbilical cord mesenchymal stem cells improve locomotor function in Parkinson’s disease mouse model through regulating intestinal microorganisms. Front Cell Dev Biol. 2022;9:808905. doi: 10.3389/fcell.2021.808905 EDN: UJHVAT
- Yu-Taeger L, Stricker-Shaver J, Arnold K, et al. Intranasal administration of mesenchymal stem cells ameliorates the abnormal dopamine transmission system and inflammatory reaction in the R6/2 mouse model of Huntington disease. Cells. 2019;8(6):595. doi: 10.3390/cells8060595 EDN: FNTLIS
- Masgutov R, Masgutova G, Mullakhmetova A, et al. Adipose-derived mesenchymal stem cells applied in fibrin glue stimulate peripheral nerve regeneration. Front Med (Lausanne). 2019;6:68. doi: 10.3389/fmed.2019.00068 EDN: RMRCKJ
- Zheng S, Yang J, Yang J, et al. Transplantation of umbilical cord mesenchymal stem cells via different routes in rats with acute liver failure. Int J Clin Exp Pathol. 2015;8(12):15854–15862.
- Zhao W, Li JJ, Cao DY, et al. Intravenous injection of mesenchymal stem cells is effective in treating liver fibrosis. World J Gastroenterol. 2012;18(10):1048–1058. doi: 10.3748/wjg.v18.i10.1048
- Peng L, Xie DY, Lin BL, et al. Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes. Hepatology. 2011;54(3):820–828. doi: 10.1002/hep.24434
- Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11(4):367–368. doi: 10.1038/nm0405-367
- Hatzistergos KE, Quevedo H, Oskouei BN, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107(7):913–922. doi: 10.1161/CIRCRESAHA.110.222703 EDN: NZOJRL
- Guo J, Zheng D, Li WF, et al. Insulin-like growth factor 1 treatment of MSCs attenuates inflammation and cardiac dysfunction following MI. Inflammation. 2014;37(6):2156–2163. doi: 10.1007/s10753-014-9949-3 EDN: ZRLFLU
- Psaltis PJ, Zannettino AC, Worthley SG, Gronthos S. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells. 2008;26(9):2201–2210. doi: 10.1634/stemcells.2008-0428
- Chang D, Fan T, Gao S, et al. Application of mesenchymal stem cell sheet to treatment of ischemic heart disease. Stem Cell Res Ther. 2021;12(1):384. doi: 10.1186/s13287-021-02451-1 EDN: IIIZDL
- Angoulvant D, Ivanes F, Ferrera R, et al. Mesenchymal stem cell conditioned media attenuates in vitro and ex vivo myocardial reperfusion injury. J Heart Lung Transplant. 2011;30(1):95–102. doi: 10.1016/j.healun.2010.08.023
- Mias C, Lairez O, Trouche E, et al. Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells. 2009;27(11):2734–2743. doi: 10.1002/stem.169
- Li L, Zhang Y, Li Y, et al. Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl Int. 2008;21(12):1181–1189. doi: 10.1111/j.1432-2277.2008.00742.x
- Chen ZY, Hu YY, Hu XF, Cheng LX. The conditioned medium of human mesenchymal stromal cells reduces irradiation-induced damage in cardiac fibroblast cells. J Radiat Res. 2018;59(5):555–564. doi: 10.1093/jrr/rry048
- Daltro PS, Barreto BC, Silva PG, et al. Therapy with mesenchymal stromal cells or conditioned medium reverse cardiac alterations in a high-fat diet-induced obesity model. Cytotherapy. 2017;19(10):1176–1188. doi: 10.1016/j.jcyt.2017.07.002
- White SJ, Chong JJH. Mesenchymal stem cells in cardiac repair: effects on myocytes, vasculature, and fibroblasts. Clin Ther. 2020;42(10):1880–1891. doi: 10.1016/j.clinthera.2020.08.010 EDN: TDUVIV
- Han Y, Yang J, Fang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92. doi: 10.1038/s41392-022-00932-0 EDN: DHCYUG
- Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–222. doi: 10.1016/j.scr.2009.12.003
- Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45(11):e54. doi: 10.1038/emm.2013.94 EDN: WOIYXD
- Qazi TH, Mooney DJ, Duda GN, Geissler S. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials. 2017;140:103–114. doi: 10.1016/j.biomaterials.2017.06.019 EDN: YFTYHU
- Drzeniek NM, Mazzocchi A, Schlickeiser S, et al. Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells. Biofabrication. 2021;13(4):10.1088/1758-5090/ac0a32. doi: 10.1088/1758-5090/ac0a32 EDN: OKHHWW
- Kadir ND, Yang Z, Hassan A, et al. Electrospun fibers enhanced the paracrine signaling of mesenchymal stem cells for cartilage regeneration. Stem Cell Res Ther. 2021;12(1):100. doi: 10.1186/s13287-021-02137-8 EDN: APTUEV
- Li J, Liu Y, Zhang Y, et al. Biophysical and biochemical cues of biomaterials guide mesenchymal stem cell behaviors. Front Cell Dev Biol. 2021;9:640388. doi: 10.3389/fcell.2021.640388 EDN: RXCGWS
- Martín-Saavedra F, Crespo L, Escudero-Duch C, et al. Substrate microarchitecture shapes the paracrine crosstalk of stem cells with endothelial cells and osteoblasts. Sci Rep. 2017;7(1):15182. doi: 10.1038/s41598-017-15036-x EDN: BJBXGN
- Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–4351. doi: 10.1016/s0142-9612(03)00340-5 EDN: EJYHWL
- Cai L, Dewi RE, Goldstone AB, et al. Regulating stem cell secretome using injectable hydrogels with in situ network formation. Adv Healthc Mater. 2016;5(21):2758–2764. doi: 10.1002/adhm.201600497
- Martinac B, Cox CD. Mechanosensory transduction: focus on ion channels. In: Reference module in life sciences. Amsterdam: Elsevier, 2017. P. 9780128096338082000. doi: 10.1016/B978-0-12-809633-8.08094-8
- Su N, Gao PL, Wang K, et al. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction. Biomaterials. 2017;141:74–85. doi: 10.1016/j.biomaterials.2017.06.028
- Li T, Ma H, Ma H, et al. Mussel-inspired nanostructures potentiate the immunomodulatory properties and angiogenesis of mesenchymal stem cells. ACS Appl Mater Interfaces. 2019;11(19):17134–17146. doi: 10.1021/acsami.8b22017
- Shen J, Li S, Chen D. TGF-β signaling and the development of osteoarthritis. Bone Res. 2014;2:14002-. doi: 10.1038/boneres.2014.2
- Ball SG, Shuttleworth AC, Kielty CM. Direct cell contact influences bone marrow mesenchymal stem cell fate. Int J Biochem Cell Biol. 2004;36(4):714–727. doi: 10.1016/j.biocel.2003.10.015
- Saleh FA, Whyte M, Ashton P, Genever PG. Regulation of mesenchymal stem cell activity by endothelial cells. Stem Cells Dev. 2011;20(3):391–403. doi: 10.1089/scd.2010.0168
- Rangappa S, Entwistle JW, Wechsler AS, Kresh JY. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg. 2003;126(1):124–132. doi: 10.1016/s0022-5223(03)00074-6
- Slotvitsky M, Berezhnoy A, Scherbina S, et al. Polymer kernels as compact carriers for suspended cardiomyocytes. Micromachines (Basel). 2022;14(1):51. doi: 10.3390/mi14010051 EDN: NRFBIT
- Aitova A, Scherbina S, Berezhnoy A, et al. Novel molecular vehicle-based approach for cardiac cell transplantation leads to rapid electromechanical graft-host coupling. Int J Mol Sci. 2023;24(12):10406. doi: 10.3390/ijms241210406 EDN: MMQIBG
- Liu Z, Tang Y, Lü S, et al. The tumourigenicity of iPS cells and their differentiated derivates. J Cell Mol Med. 2013;17(6):782–791. doi: 10.1111/jcmm.12062
- Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010;28(9):1568–1570. doi: 10.1002/stem.471
- Mojsilović S, Jauković A, Kukolj T, et al. Tumorigenic aspects of MSC senescence-implication in cancer development and therapy. J Pers Med. 2021;11(11):1133. doi: 10.3390/jpm11111133 EDN: JEOIWV
- Masumoto H, Ikuno T, Takeda M, et al. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep. 2014;4:6716. doi: 10.1038/srep06716
- Masumoto H, Nakane T, Tinney JP, et al. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Sci Rep. 2016;6:29933. doi: 10.1038/srep29933 EDN: XZETPX
- Szepes M, Melchert A, Dahlmann J, et al. Dual function of iPSC-derived pericyte-like cells in vascularization and fibrosis-related cardiac tissue remodeling in vitro. Int J Mol Sci. 2020;21(23):8947. doi: 10.3390/ijms21238947 EDN: PEBYDK
- Abulaiti M, Yalikun Y, Murata K, et al. Establishment of a heart-on-a-chip microdevice based on human iPS cells for the evaluation of human heart tissue function. Sci Rep. 2020;10(1):19201. doi: 10.1038/s41598-020-76062-w EDN: SERBNZ
- Sequiera GL, Srivastava A, Sareen N, et al. Development of iPSC-based clinical trial selection platform for patients with ultrarare diseases. Sci Adv. 2022;8(14):eabl4370. doi: 10.1126/sciadv.abl4370 EDN: BJRNGS
- Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–1046. doi: 10.1056/NEJMoa1608368
- Takahashi J. iPS cell-based therapy for Parkinson’s disease: A Kyoto trial. Regen Ther. 2020;13:18–22. doi: 10.1016/j.reth.2020.06.002 EDN: WYNLUC
- Slotvitsky M, Tsvelaya V, Frolova S, et al. Arrhythmogenicity test based on a human-induced pluripotent stem cell (iPSC)-derived cardiomyocyte layer. Toxicol Sci. 2019;168(1):70–77. doi: 10.1093/toxsci/kfy274 EDN: QDKOBG
- Podgurskaya AD, Slotvitsky MM, Tsvelaya VA, et al. Cyclophosphamide arrhythmogenicitytesting using human-induced pluripotent stem cell-derived cardiomyocytes. Sci Rep. 2021;11(1):2336. doi: 10.1038/s41598-020-79085-5 EDN: LBJXSY
- Thanaskody K, Jusop AS, Tye GJ, et al. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol. 2022;10:1005926. doi: 10.3389/fcell.2022.1005926 EDN: YKXQEM
- Barkholt L, Flory E, Jekerle V, et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies — bridging scientific observations and regulatory viewpoints. Cytotherapy. 2013;15(7):753–759. doi: 10.1016/j.jcyt.2013.03.005 EDN: RJDTSN
- Karpov AA, Udalova DV, Pliss MG, Galagudza MM. Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells. Cell Prolif. 2017;50(2):e12316. doi: 10.1111/cpr.12316 EDN: YUTTXJ
- Moy AB, Kamath A, Ternes S, Kamath J. The challenges to advancing induced pluripotent stem cell-dependent cell replacement therapy. Med Res Arch. 2023;11(11):4784. doi: 10.18103/mra.v11i11.4784 EDN: ANLJXY
- Smolinská V, Boháč M, Danišovič Ľ. Current status of the applications of conditioned media derived from mesenchymal stem cells for regenerative medicine. Physiol Res. 2023;72(S3):S233–S245. doi: 10.33549/physiolres.935186 EDN: OIXEHU
- Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–834. doi: 10.1038/nature09262
- Anderson JD, Johansson HJ, Graham CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappa B signaling. Stem Cells. 2016;34(3):601–613. doi: 10.1002/stem.2298
- Menasché P, Vanneaux V, Hagège A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36(30):2011–2017. doi: 10.1093/eurheartj/ehv189
- Matta A, Nader V, Lebrin M, et al. Pre-conditioning methods and novel approaches with mesenchymal stem cells therapy in cardiovascular disease. Cells. 2022;11(10):1620. doi: 10.3390/cells11101620 EDN: ZDMTKC
- Beohar N, Rapp J, Pandya S, Losordo DW. Rebuilding the damaged heart: the potential of cytokines and growth factors in the treatment of ischemic heart disease. J Am Coll Cardiol. 2010;56(16):1287–1297. doi: 10.1016/j.jacc.2010.05.039
- Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–896. doi: 10.1016/s0301-472x(03)00110-3
- Psaltis PJ, Simari RD. Vascular wall progenitor cells in health and disease. Circ Res. 2015;116(8):1392–1412. doi: 10.1161/CIRCRESAHA.116.305368 EDN: VGAWDR
- Lee CS, Bishop ES, Zhang R, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017;4(2):43–63. doi: 10.1016/j.gendis.2017.04.001
- Yang YK, Ogando CR, Wang See C, et al. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther. 2018;9(1):131. doi: 10.1186/s13287-018-0876-3 EDN: YGTMQX
- Madeira A, da Silva CL, dos Santos F, et al. Human mesenchymal stem cell expression program upon extended ex-vivo cultivation, as revealed by 2-DE-based quantitative proteomics. PLoS One. 2012;7(8):e43523. doi: 10.1371/journal.pone.0043523
Қосымша файлдар
