The fate of iPSCs-derived low immunogenic dopaminergic neuron precursors after transplantation into the striatum of rats with 6-OHDA-induced parkinsonism

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Parkinson’s disease arises from the demise of dopaminergic neurons in the substantia nigra resulting from both environmental and hereditary factors. Drug interventions can solely delay disease progression, but cannot provide a cure. Therefore, cell replacement therapy may represent a promising treatment approach. Although the United States has already employed this technology, independent clinical and preclinical trials are mandatory for its inclusion in Russia. The iPSC technology enables the acquisition of personalized iPSC lines for each patient, nearly eradicating the immune response. While autologous cell therapy is theoretically ideal, the reprogramming of patient cells into iPSCs and subsequent differentiation for each patient incurs time and cost. Alternatively, differentiated derivatives of low immunogenic iPSCs, lacking HLA class I expression, can serve as a substitute. These cells evade the T-cell immune response, but other minor HLAs and cells from the innate immune system, like macrophages and NK cells, could still participate in the immune response’s development, although not as potent as in allogeneic transplantation. While these cell products don’t escape the immune response entirely, they lessen it significantly, potentially enabling the use of less severe immunosuppressive therapy. In this study, a protocol previously established in the cell biology laboratory was used to differentiate iPSCs lacking HLA class I expression and wild-type iPSCs into midbrain dopaminergic neuron precursors. A thorough analysis of the forerunners was performed and demonstrated appropriate patterning. The progenitors were then implanted into the brains of rats with 6-OHDA-induced Parkinsonism and followed for 6 months to compare their in vivo differentiation to standard differentiation in vitro. In addition, the systemic inflammatory response of the animals to the transplantation and the biodistribution of the injected cells were investigated. The literature inadequately addresses the question of which cells, other than dopaminergic neurons, differentiate during in vivo graft differentiation and potentially cause side effects in cell therapy. The literature suggests that only approximately 3% of transplanted cells differentiate into dopaminergic neurons, which is adequate to improve motor function in model animals. We found that a significant proportion of the progenitors differentiate into glial cells. The dynamics of maturation of transplanted neurons was evaluated. Thus, we approached preclinical testing of the cell product after having characterized in detail the dynamics of maturation and the composition of the graft. Comparison of in vivo and in vitro differentiation will allow evaluation of the quality of cellular material for transplantation.

Texto integral

Parkinson’s disease arises from the demise of dopaminergic neurons in the substantia nigra resulting from both environmental and hereditary factors. Drug interventions can solely delay disease progression, but cannot provide a cure. Therefore, cell replacement therapy may represent a promising treatment approach. Although the United States has already employed this technology, independent clinical and preclinical trials are mandatory for its inclusion in Russia. The iPSC technology enables the acquisition of personalized iPSC lines for each patient, nearly eradicating the immune response. While autologous cell therapy is theoretically ideal, the reprogramming of patient cells into iPSCs and subsequent differentiation for each patient incurs time and cost. Alternatively, differentiated derivatives of low immunogenic iPSCs, lacking HLA class I expression, can serve as a substitute. These cells evade the T-cell immune response, but other minor HLAs and cells from the innate immune system, like macrophages and NK cells, could still participate in the immune response’s development, although not as potent as in allogeneic transplantation. While these cell products don’t escape the immune response entirely, they lessen it significantly, potentially enabling the use of less severe immunosuppressive therapy. In this study, a protocol previously established in the cell biology laboratory was used to differentiate iPSCs lacking HLA class I expression and wild-type iPSCs into midbrain dopaminergic neuron precursors. A thorough analysis of the forerunners was performed and demonstrated appropriate patterning. The progenitors were then implanted into the brains of rats with 6-OHDA-induced Parkinsonism and followed for 6 months to compare their in vivo differentiation to standard differentiation in vitro. In addition, the systemic inflammatory response of the animals to the transplantation and the biodistribution of the injected cells were investigated. The literature inadequately addresses the question of which cells, other than dopaminergic neurons, differentiate during in vivo graft differentiation and potentially cause side effects in cell therapy. The literature suggests that only approximately 3% of transplanted cells differentiate into dopaminergic neurons, which is adequate to improve motor function in model animals. We found that a significant proportion of the progenitors differentiate into glial cells. The dynamics of maturation of transplanted neurons was evaluated. Thus, we approached preclinical testing of the cell product after having characterized in detail the dynamics of maturation and the composition of the graft. Comparison of in vivo and in vitro differentiation will allow evaluation of the quality of cellular material for transplantation.

ADDITIONAL INFORMATION

Acknowledgments. We thank the Center for Precision Editing and Genetic Technologies for Biomedicine for providing resources for this project.

×

Sobre autores

D. Voronkov

Research Center of Neurology Russian Academy of Sciences

Email: oslebedeva@rcpcm.org
Rússia, Moscow

O. Lebedeva

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine

Autor responsável pela correspondência
Email: oslebedeva@rcpcm.org
Rússia, Moscow

A. Stavrovskaya

Research Center of Neurology Russian Academy of Sciences

Email: oslebedeva@rcpcm.org
Rússia, Moscow

M. Bogomiakova

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine

Email: oslebedeva@rcpcm.org
Rússia, Moscow

A. Olshanskiy

Research Center of Neurology Russian Academy of Sciences

Email: oslebedeva@rcpcm.org
Rússia, Moscow

I. Kopylova

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine

Email: oslebedeva@rcpcm.org
Rússia, Moscow

A. Gushchina

Research Center of Neurology Russian Academy of Sciences

Email: oslebedeva@rcpcm.org
Rússia, Moscow

A. Simonova

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine

Email: oslebedeva@rcpcm.org
Rússia, Moscow

E. Ruchko

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine

Email: oslebedeva@rcpcm.org
Rússia, Moscow

S. Illarioshkin

Research Center of Neurology Russian Academy of Sciences

Email: oslebedeva@rcpcm.org
Rússia, Moscow

A. Eremeev

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine

Email: oslebedeva@rcpcm.org
Rússia, Moscow

M. Lagarkova

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine

Email: oslebedeva@rcpcm.org
Rússia, Moscow

Bibliografia

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Eco-Vector, 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».