Tissue-specific expression and alternative splicing of fibroblast activation protein alpha (FAPα) gene in human stromal cells

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

BACKGROUND: Activated stromal cells, responsible for tissue repair and restoration of tissue integrity, play an important role in tissue response to damage. The key marker of activated stromal cells is the fibroblast activation protein α (FAPα), which is apparently involved in the regulation of stromal cell functions, especially in the development of fibrosis. However, It is poorly known about tissue differences in expression and possible splice variants of this protein in stromal cells.

AIM: The aim is to establish the tissue specificity of FAPα expression, including the synthesis of alternative splicing products, in human stromal cells isolated from various sources.

METHODS: The expression of individual sites encoding the functional domains of FAPα in human stromal cells isolated from five tissue sources differing in embryonic origin and reparative reactions to damage (skin, subcutaneous adipose tissue, orbital adipose tissue, lungs, endometrium) was analyzed by real-time polymerase chain reaction. The key profibrotic factor TGFβ was used to activate stromal cells.

RESULTS: Low background expression of all RNA sequences encoding functional domains of FAPα responsible for protein configuration or for its enzymatic functions is noted in stromal cells from skin, lungs and adipose tissue. Their expression is significantly increased (2–2.5 times) upon induction of stromal cell activation by TGFβ. In endometrial mesenchymal stromal cell, the expression of these sites is extremely low and comparable to the level of expression in epithelial cells, which indicates the presence of tissue-specific expression of the FAPα gene in stromal cells. In all stromal cell lines, an increase in the relative expression level of the RNA sequence encoding the transmembrane domain of FAPα is observed.

CONCLUSION: Thus, the obtained results suggest that the analyzed cell lines either lack alternative FAPα splicing, or manifest themselves with a very low probability when activated in the form of a relative increase in the expression of the gene region encoding the transmembrane domain of FAPα. Most probably, the studied stromal cells synthesize mRNA carrying all the original exons and encoding predominantly the complete FAPα protein, that includes all functional domains.

Sobre autores

Anastasiya Tolstoluzhinskaya

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: tolstoluzhinskayaae@my.msu.ru
ORCID ID: 0000-0001-8362-2902
Código SPIN: 6592-9889
Rússia, Moscow

Natalya Basalova

Lomonosov Moscow State University

Email: basalovana@my.msu.ru
ORCID ID: 0000-0002-2597-8879
Código SPIN: 2448-4671

Cand. Sci. (Biology)

Rússia, Moscow

Maxim Karagyaur

Lomonosov Moscow State University

Email: m.karagyaur@mail.ru
ORCID ID: 0000-0003-4289-3428
Código SPIN: 9504-4257

Cand. Sci. (Biology)

Rússia, Moscow

Anastasia Efimenko

Lomonosov Moscow State University

Email: efimenkoan@gmail.com
ORCID ID: 0000-0002-0696-1369
Código SPIN: 5110-5998

MD, Cand. Sci. (Medicine)

Rússia, Moscow

Bibliografia

  1. Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020;587(7835):555–566. doi: 10.1038/s41586-020-2938-9 EDN: KNAIWV
  2. Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest. 2018;128(1):45–53. doi: 10.1172/JCI93557
  3. Acharya PS, Zukas A, Chandan V, et al. Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol. 2006;37(3):352–360. doi: 10.1016/j.humpath.2005.11.020
  4. Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76–83. doi: 10.1016/j.cbi.2018.07.008
  5. Kanisicak O, Khalil H, Ivey MJ, et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun. 2016;7:12260. doi: 10.1038/ncomms12260
  6. Ugurlu B, Karaoz E. Comparison of similar cells: Mesenchymal stromal cells and fibroblasts. Acta Histochem. 2020;122(8):151634. doi: 10.1016/j.acthis.2020.151634 EDN: LTJEXX
  7. Kilvaer TK, Rakaee M, Hellevik T, et al. Tissue analyses reveal a potential immune-adjuvant function of FAP-1 positive fibroblasts in non-small cell lung cancer. PLoS One. 2018;13(2):e0192157. doi: 10.1371/journal.pone.0192157
  8. Yang P, Luo Q, Wang X, et al. Comprehensive analysis of fibroblast activation protein expression in interstitial lung diseases. Am J Respir Crit Care Med. 2023;207(2):160–172. doi: 10.1164/rccm.202110-2414OC EDN: NUYIKK
  9. Kimura T, Monslow J, Klampatsa A, et al. Loss of cells expressing fibroblast activation protein has variable effects in models of TGF-β and chronic bleomycin-induced fibrosis. Am J Physiol Lung Cell Mol Physiol. 2019;317(2):L271–L282. doi: 10.1152/ajplung.00071.2019
  10. O’Brien P, O’Connor BF. Seprase: an overview of an important matrix serine protease. Biochim Biophys Acta. 2008;1784(9):1130–1145. doi: 10.1016/j.bbapap.2008.01.006
  11. Zhang HE, Hamson EJ, Koczorowska MM, et al. Identification of novel natural substrates of fibroblast activation protein-alpha by differential degradomics and proteomics. Mol Cell Proteomics. 2019;18(1):65–85. doi: 10.1074/mcp.RA118.001046
  12. Xin L, Gao J, Zheng Z, et al. Fibroblast activation protein-α as a target in the bench-to-bedside diagnosis and treatment of tumors: a narrative review. Front Oncol. 2021;11:648187. doi: 10.3389/fonc.2021.648187 EDN: CSKJMI
  13. Fan MH, Zhu Q, Li HH, et al. Fibroblast activation protein (FAP) accelerates collagen degradation and clearance from lungs in mice. J Biol Chem. 2016;291(15):8070–8089. doi: 10.1074/jbc.M115.701433
  14. Aertgeerts K, Levin I, Shi L, et al. Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha. J Biol Chem. 2005;280(20):19441–19444. doi: 10.1074/jbc.C500092200
  15. Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020;39(3):783–803. doi: 10.1007/s10555-020-09909-3 EDN: GFJRDK
  16. Goldstein LA, Chen WT. Identification of an alternatively spliced seprase mRNA that encodes a novel intracellular isoform. J Biol Chem. 2000;275(4):2554–2559. doi: 10.1074/jbc.275.4.2554
  17. Niedermeyer J, Enenkel B, Park JE, et al. Mouse fibroblast-activation protein — conserved Fap gene organization and biochemical function as a serine protease. Eur J Biochem. 1998;254(3):650–654. doi: 10.1046/j.1432-1327.1998.2540650.x
  18. Eremichev SH, Yang HJ, Kim DS, et al. Clinical efficacy of retrograde urethrogra-phy-assisted urethral catheterization after failed conventional urethral catheterization. BMC Urol. 2021;21(1):17. doi: 10.1186/s12894-021-00788-6 EDN: YWRTPN
  19. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262
  20. Gorrell MD, Gysbers V, McCaughan GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol. 2001;54(3):249–264. doi: 10.1046/j.1365-3083.2001.00984.x EDN: BAUZCV
  21. Barbosa-Morais NL, Irimia M, Pan Q, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338(6114):1587–1593. doi: 10.1126/science.1230612 EDN: RJWAAB
  22. Will CL, Lührmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol. 2011;3(7):a003707. doi: 10.1101/cshperspect.a003707
  23. Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol. 2023;24(4):242–254. doi: 10.1038/s41580-022-00545-z EDN: KNCVSZ
  24. Liu Q, Fang L, Wu C. Alternative splicing and isoforms: from mechanisms to diseases. Genes (Basel). 2022;13(3):401. doi: 10.3390/genes13030401 EDN: RWIXTU
  25. Roberts α from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med. 2013;210(6):1137–1151. doi: 10.1084/jem.20122344
  26. Meletta R, Müller Herde A, Chiotellis A, et al. Evaluation of the radiolabeled boronic acid-based FAP inhibitor MIP-1232 for atherosclerotic plaque imaging. Molecules. 2015;20(2):2081–2099. doi: 10.3390/molecules20022081
  27. Harvey SE, Lyu J, Cheng C. Methods for characterization of alternative RNA splicing. Methods Mol Biol. 2021;2372:209–222. doi: 10.1007/978-1-0716-1697-0_19
  28. Ang CJ, Skokan TD, McKinley KL. Mechanisms of regeneration and fibrosis in the endometrium. Annu Rev Cell Dev Biol. 2023;39:197–221. doi: 10.1146/annurev-cellbio-011723-021442 EDN: CAHZNB

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structure of fibroblast activation protein alpha: a — protein sequence of the FAPα: amino acids 1–4 are responsible for the intracellular domain; 5–25 make up the transmembrane domain; the remaining amino acids up to 760 are the extracellular part of the protein, while the β-propeller domain consists of amino acids 54–492, and the α/β-hydrolase domain is 493–760; b — protein structure, side.

Baixar (642KB)
3. Fig. 2. Micrographs of used cell cultures, phase contrast (inverted microscope "Leica DM IL Led", Leica Microsystems, Switzerland): a — dSC (stromal cells derived from human dermis); b — lSC (stromal cells derived from human lungs); c — aSC (stromal cells derived from human adipose tissue); d — eSC (stromal cells derived from menstrual secretions of the endometrium of the uterus); e — oaSC (stromal cells derived from orbital adipose tissue); f — HEK (HEK-293T) are linear cells of human embryonic renal epithelium. The scale bar is 100 microns.

Baixar (916KB)
4. Fig. 3. Electrophoresis of complementary DNA polymerase chain reaction products of the lSC line (lung stromal cells). The primers the reactions were associated with certain regions of the FAPα gene encoding various functional domains of the protein (from left to right): 1 — GAPDH is a constitutive gene for normalization of results (glyceraldehyde-3-phosphate dehydrogenase), 2 — intracellular domain, 3 — transmembrane domain, 4 — extracellular domain, 5 — β-propeller domain, 6 — α/β-hydrolase domain, and further GeneRuler 100 bp DNA Ladder indicating 300, 200 and 100 base pairs (п.о.).

Baixar (132KB)
5. Fig. 4. Graphs show the expression level of FAPα gene fragments (in conventional units) in stromal cell cultures isolated from various tissue sources: lung (лСК), skin (дСК), orbital fat (оСК), abdominal fat (жСК), endometrium (эСК), and the HEK line. The studied FAPα fragments encode various functional domains of the protein: a — intracellular, b — transmembrane, c — extracellular, d — β-propeller and e — α/β-hydrolase.

Baixar (750KB)
6. Fig. 5. Graphs show the expression level of FAPα gene fragments (in conventional units) in cell cultures before (blue columns) and after (red columns) addition of the TGFß factor: a — lSC (pulmonary stromal cells), b — dSC (dermal stromal cells), c — aSC (stromal cells derived from adipose tissue). The studied gene sequences encode different functional domains, respectively: 1 — intracellular domain, 2 — transmembrane domain, 3 — extracellular domain, 4 — β-propeller domain, 5 — α/β-hydrolase domain. These numbers are the value of p, which was obtained as a result of calculating the Mann–Whitney criterion for a pair of samples without and with the addition of TGFβ and the Kraskel–Wallis criterion for groups of samples without the addition of TGFβ and after the addition of TGFβ.

Baixar (497KB)
7. Fig. 6. Graphs show the expression level of FAPα gene fragments (in conventional units) in cell cultures: a — stromal cells derived from orbital fat (oaSC); b — stromal cells derived from the endometrium of the uterus (eSC). The studied gene sequences encode different functional domains, respectively: 1 — intracellular domain, 2 — transmembrane domain, 3 — extracellular domain, 4 — β-propeller domain, 5 — α/β-hydrolase domain. The p value is calculated according to the Kraskel–Wallis criterion.

Baixar (286KB)
8. Fig. 7. Electrophoresis of PCR products obtained from complementary DNA samples of dermal stromal cells (дСК) and pulmonary stromal cells (лСК) without and after addition of TGFβ, as well as endometrial stromal cells (эСК). The rightmost band is DNA Ladder 1 kb DNA length markers (NL001; “Eurogene”, Russia). From left to right: the first five bands after the marker are the products of amplification of the whole FAPα gene; the next three bands are PCR products of samples of pulmonary stromal cells before and after induction of TGFβ, obtained using pairs of primers No. 1–3 of Table 2, respectively; the next three bands are PCR products of endometrial stem cell samples obtained using primer pairs No. 1, No. 2 and No. 3. The yellow numbers indicate the bands selected for sequencing. PCR — polymerase chain reaction, “–TGFß” — without addition of TGFß, “+TGFß” — after addition of TGFß.

Baixar (402KB)

Declaração de direitos autorais © Eco-Vector, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».