Elements of artificial intelligence in solving problems of text analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Due to the ever-increasing volume of textual information on the Internet and the need to navigate it, the automation of the text analysis process has become urgent. The analysis of the subject area has shown a great demand for the identification of textual information coloring and the application of works on this problem in practice. This paper deals with the development of a neural network model for analyzing commentary tone. Recurrent neural network models with long short-term memory modules (LSTM) are used for the purpose. We have developed an information system that determines the tone of comments on posts in the communities of the social network “VKontakte”. As a result of training of the artificial neural network, the model showed good accuracy in determining the tone of the text. The information system was implemented in the marketing department of the Nizhnevartovsk Construction College Budget Institution.

About the authors

Tatyana S. Katermina

Nizhnevartovsk State University

Email: nggu-lib@mail.ru
Cand. Sci. (Eng.); associate professor at the Department of Informatics and Methods of Teaching Informatics Nizhnevartovsk, Russian Federation

Kadir M. Tagirov

Nizhnevartovsk State University

Email: kadir.tagirov1997@gmail.com
master; teacher Nizhnevartovsk, Russian Federation

Tagir M. Tagirov

Nizhnevartovsk State University

Email: agirov97bocman@gmail.com
master; teacher Nizhnevartovsk, Russian Federation

References

  1. Abbasi A., Javed A.R., Iqbal F. et al. Authorship identification using ensemble learning. Scientific Reports. 2022. No. 12 (1). doi: 10.1038/s41598-022-13690-4.
  2. Alibasic A., Upadhyay H., Simsekler M.C.E. et al. Evaluation of the trends in jobs and skill-sets using data analytics: A case study. Journal of Big Data. 2022. No. 9 (1). doi: 10.1186/s40537-022-00576-5.
  3. Lee C.K.M., Kam K.H. Ng, Chun-Hsien Chen et al. Tiffany Tsoi, American sign language recognition and training method with recurrent neural network. Expert Systems with Applications. 2021. Vol. 167.
  4. Khurshid S., Reeder C., Harrington L.X. et al. Cohort design and natural language processing to reduce bias in electronic health records research. Npj Digital Medicine. 2022. Vol. 5. No. 47. URL: https://doi.org/10.1038/s41746-022-00590-0
  5. Ledro C., Nosella A., Vinelli A. Artificial intelligence in customer relationship management: Literature review and future research directions. Journal of Business and Industrial Marketing. 2022. No. 37 (13). Pp. 48-63. doi: 10.1108/JBIM-07-2021-0332.
  6. Li S., Wang G., Luo Y. Tone of language, financial disclosure, and earnings management: A textual analysis of form 20-F. Financial Innovation. 2022. No. 8 (1). doi: 10.1186/s40854-022-00346-5.
  7. Luo Z., Zhu M. Recurrent neural networks with mixed hierarchical structures for natural language processing.International Joint Conference on Neural Networks (IJCNN). 2021. Pp. 1-8. doi: 10.1109/IJCNN52387.2021.9533347.
  8. Mohd Usama, Belal Ahmad, Enmin Song et al. Attention-based sentiment analysis using convolutional and recurrent neural network. Future Generation Computer Systems. 2020. Pp. 571-578.
  9. Nijhawan T., Attigeri G., Ananthakrishna T. Stress detection using natural language processing and machine learning over social interactions. Journal of Big Data. 2022. No. 9 (1). doi: 10.1186/s40537-022-00575-6.
  10. Orea-Giner A., Fuentes-Moraleda L., Villacé-Molinero T. et al. Does the implementation of robots in hotels influence the overall tripadvisor rating? A text mining analysis from the Industry 5.0 approach. Tourism Management. 2022. No. 93. doi: 10.1016/j.tourman.2022.104586.
  11. Riezler S., Hagmann M. Validity, reliability, and significance: Empirical methods for NLP and data science. Synthesis Lectures on Human Language Technologies. 2022. No. 14 (6). Pp. 1-147. doi: 10.2200/S01137ED1V01Y202110HLT055.
  12. Sherstinsky A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena. 2020. Vol. 404.
  13. Turner R.J., Coenen F., Roelofs F. et al. Information extraction from free text for aiding transdiagnostic psychiatry: Constructing NLP pipelines tailored to clinicians’ needs. BMC Psychiatry. 2022. No. 22 (1). doi: 10.1186/s12888-022-04058-z.
  14. Dankers V., Langedijk A., McCurdy K. et al. Generalising to German plural noun classes, from the perspective of a recurrent neural network. Proceedings of the 25th Conference on Computational Natural Language Learning. 2021. Pp. 94-108.
  15. Zhang T., Schoene A.M., Ji S., Ananiadou S. Natural language processing applied to mental illness detection: A narrative review. Npj Digital Medicine. 2022. No. 5 (1). doi: 10.1038/s41746-022-00589-7.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».