Application of Computer Mathematics Systems for Solving Problems of Contact Geometry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Task. The development of research in the field of contact geometry is impossible without the use of computer mathematics systems. Carrying out a computational experiment allows not only obtaining numerical results, analytical expressions, but also highlighting the correct and promising direction in obtaining theoretical results. Purpose of the work: to consider the application of computer mathematics systems to solving problems of contact geometry. Achieving the goals set in the work is carried out on the basis of the integrated use of computer algebra methods, mathematical modeling, the theory of differential geometry and tensor analysis. Findings. In this paper, we present schemes for studying contact Lie groups of arbitrary odd dimension. An algorithm and a set of programs have been developed in the Maxima computer mathematics system for modeling the proof of the existence of Sasakian structures. Practical value. This algorithm can be used to study contact structures on homogeneous spaces. The proposed schemes are of scientific and practical interest for specialists in the field of differential geometry and methods of its applications, as well as for solving the problems of developing quantum computing devices.

About the authors

Yaroslavna Viktorovna Slavolyubova

T.F. Gorbachev Kuzbass State Technical University

Email: slavolubovayav@kuzstu.ru
Cand. Sci. (Phys.-Math.), Associate Professor; associate professor at the Department of Applied Information Technologies Kemerovo, Russian Federation

References

  1. Blair D.E. Riemannian geometry of contact and symplectic manifolds. In: Progress in Math. Birkhauser, 2010. 203 p.
  2. Becker T. Geodesic and conformally Reeb vector fields on flat 3-manifolds [Electronic resource]. URL: https://arxiv.org/abs/2207.03274 (data of accesses: 12.07.2022).
  3. Diatta A. Left invariant contact structures on Lie groups // Diff. Geom. аnd its Appl. Vol. 26. Iss. 5. Pp. 544-552. DOI: https://doi.org/10.1016/j.difgeo.2008.04.001.
  4. Marín-Salvador A. On the canonical contact structure of the space of null geodesics of a spacetime [Electronic resource]. URL: https://arxiv.org/abs/2109.03656 (data of accesses: 12.07.2022).
  5. Min H. The contact mapping class group and rational unknots in lens spaces [Electronic resource]. URL: https://arxiv.org/abs/2207.03590 (data of accesses: 12.07.2022).
  6. Dacko P. Rank of Jacobi operator and existence of quadratic parallel differential form, with applications to geometry of almost Para-contact metric manifolds [Electronic resource]. URL: https://arxiv.org/abs/1806.05604 (data of accesses: 12.07.2022).
  7. Dattin C. Sutured contact homology, conormal stops and hyperbolic knots [Electronic resource]. URL: https://arxiv.org/abs/2206.07782 (data of accesses: 12.07.2022).
  8. Teruya M. Almost contact structures on the deformation space of rational curves in a 4-dimensional twistor space [Electronic resource]. URL: https://arxiv.org/abs/2206.13151 (data of accesses: 12.07.2022).
  9. Dyakonov V.P. New computer algebra systems MAXIMA and wxMAXIMA. Components and Technologies. 2014. No. 2. Pp. 117-126. (In Rus.)
  10. Kirenberg A.G., Slavolyubova Ya.V. Real and predictive assessment of the degree of influence of radio channel noise on the data transfer rate in Wi-Fi wireless networks. Comp. Nanotechnol. 2019. Vol. 6. No. 1. Pp. 53-59. (In Rus.)
  11. Slavolyubova Ya.V. Associated left-invariant contact metric structures on the 7-dimensional Heisenberg group H7. Tomsk State University. Journal of Mathematics and Mechanics. 2018. No. 54. Pp. 34-45. (In Rus.)
  12. Slavolyubova Y.V. Contact metric structures on odd-dimensional unit spheres. Tomsk State University. Journal of Mathematics and Mechanics. 2014. No. 6. Pp. 46-54. (In Rus.)

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».