Application of Computer Mathematics Systems for Solving Problems of Contact Geometry
- Authors: Slavolyubova Y.V.1
-
Affiliations:
- T.F. Gorbachev Kuzbass State Technical University
- Issue: Vol 9, No 3 (2022)
- Pages: 37-44
- Section: Articles
- URL: https://journal-vniispk.ru/2313-223X/article/view/147148
- DOI: https://doi.org/10.33693/2313-223X-2022-9-3-37-44
- ID: 147148
Cite item
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Yaroslavna Viktorovna Slavolyubova
T.F. Gorbachev Kuzbass State Technical University
Email: slavolubovayav@kuzstu.ru
Cand. Sci. (Phys.-Math.), Associate Professor; associate professor at the Department of Applied Information Technologies Kemerovo, Russian Federation
References
- Blair D.E. Riemannian geometry of contact and symplectic manifolds. In: Progress in Math. Birkhauser, 2010. 203 p.
- Becker T. Geodesic and conformally Reeb vector fields on flat 3-manifolds [Electronic resource]. URL: https://arxiv.org/abs/2207.03274 (data of accesses: 12.07.2022).
- Diatta A. Left invariant contact structures on Lie groups // Diff. Geom. аnd its Appl. Vol. 26. Iss. 5. Pp. 544-552. DOI: https://doi.org/10.1016/j.difgeo.2008.04.001.
- Marín-Salvador A. On the canonical contact structure of the space of null geodesics of a spacetime [Electronic resource]. URL: https://arxiv.org/abs/2109.03656 (data of accesses: 12.07.2022).
- Min H. The contact mapping class group and rational unknots in lens spaces [Electronic resource]. URL: https://arxiv.org/abs/2207.03590 (data of accesses: 12.07.2022).
- Dacko P. Rank of Jacobi operator and existence of quadratic parallel differential form, with applications to geometry of almost Para-contact metric manifolds [Electronic resource]. URL: https://arxiv.org/abs/1806.05604 (data of accesses: 12.07.2022).
- Dattin C. Sutured contact homology, conormal stops and hyperbolic knots [Electronic resource]. URL: https://arxiv.org/abs/2206.07782 (data of accesses: 12.07.2022).
- Teruya M. Almost contact structures on the deformation space of rational curves in a 4-dimensional twistor space [Electronic resource]. URL: https://arxiv.org/abs/2206.13151 (data of accesses: 12.07.2022).
- Dyakonov V.P. New computer algebra systems MAXIMA and wxMAXIMA. Components and Technologies. 2014. No. 2. Pp. 117-126. (In Rus.)
- Kirenberg A.G., Slavolyubova Ya.V. Real and predictive assessment of the degree of influence of radio channel noise on the data transfer rate in Wi-Fi wireless networks. Comp. Nanotechnol. 2019. Vol. 6. No. 1. Pp. 53-59. (In Rus.)
- Slavolyubova Ya.V. Associated left-invariant contact metric structures on the 7-dimensional Heisenberg group H7. Tomsk State University. Journal of Mathematics and Mechanics. 2018. No. 54. Pp. 34-45. (In Rus.)
- Slavolyubova Y.V. Contact metric structures on odd-dimensional unit spheres. Tomsk State University. Journal of Mathematics and Mechanics. 2014. No. 6. Pp. 46-54. (In Rus.)
Supplementary files
