Math Methods and Models of Products Knowledge Management

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The purpose of this research work is to review the existing literature on methods and solutions to the problem of efficient storage and processing of semi-structured semantic information, including in the field of product knowledge management. At the beginning of the article, the rationale for the relevance of the study is given, then it discusses possible ways to build an ontology of semantic networks, various types of knowledge representation, a stack of possible technologies on which such networks can potentially be implemented. An explanation of the semantics, ways to search for information in such systems, including an overview of the semantic data query languages used, as well as ready-made implementations of knowledge bases, is given. The result of the research work was the creation of an extensive database of analyzed sources, which raises the problem of processing semi-structured heterogeneous data, as well as searching for information on them. In addition, as a result of the study, the most effective solution to the above problem was derived - the construction of an ontology of knowledge, the representation of knowledge within the ontology, semantic networks and their architecture, and implementation. Finally, the author managed to prove a high degree of relevance of further qualitative and in-depth scientific research on the problem considered in the research work.

About the authors

Alexey A. Trishin

Financial University under the Government of the Russian Federation

Email: info@nationalscience.ru
graduate student Moscow, Russian Federation

References

  1. O’Grady M. Half of online retail spending came from marketplaces in 2016. Research article. URL: https://www.forrester.com/blogs/half-of-online-retail-spending-came-from-marketplaces-in-2016/(data of accesses: 15.01.2021).
  2. Maksimov N., Lebedev A. Knowledge ontology system. In: Procedia Computer Science: Annual International Conference on Brain-Inspired Cognitive Architectures for Artificial Intelligence: Eleventh Annual Meeting of the BICA Society. 2020. No. 190. Pp. 540-545.
  3. Haav H. A semi-automatic method to ontology design by using FCA. In: Proceedings of Concept Lattices and their Applications (CLA). V. Snásel, R. Belohlávek (eds.). Ostrava, Czech Republic, 2004. Pp. 13-24.
  4. Avdeenko T.V., Makarova E.S. Knowledge representation model based on case-based reasoning and the domain ontology: Application to the IT consultation. IFAC-Papers Online, 2018. Vol. 51. Issue 11. Pp. 1218-1223.
  5. Grimm S., Hitzler P. Knowledge representation and ontologies. Semantic Web Services: Concepts, Technologies, and Applications. 2007. Pp. 51-106.
  6. Sheth A., Ramakrishnan C., Thomas C. Semantics for the Semantic Web: The implicit, the formal and the powerful.International Journal on Semantic Web and Information Systems. 2005. No. 1 (1). Pp. 1-18.
  7. Guha R., McCool R., Miller E. Semantic search. In: The Twelfth International World Wide Web Conference, May 2003.
  8. Broekstra J., Kampman A., van Harmelen F. Sesame: A generic architecture for storing and querying RDF and RDF Schema. In: Proceedings of the First Internation Semantic Web Conference, number 2342 in Lecture Notes in Computer Science. I. Horrocks, J. Hendler (eds.). Springer Verlag, July 2002. Pp. 54-68.
  9. Kifer M.Rules and Ontologies in F-logic. Department of Computer Science. Stony Brook University, 2005.
  10. Haase P., Broekstra J., Eberhart A., Volz R. A comparison of RDF query languages. In: The Semantic Web - ISWC 2004. Proceedings of the Third International Semantic Web Conference, 2004.
  11. Sheth A., Ramakrishnan C. Semantic (Web) technology in action: Ontology driven information systems for search, integration and analysis. IEEE Data engineering Bulletin, Special issue on Making the Semantic Web Real. December 2003. Pp. 40-48.
  12. Corcho O., Gómez-Pérez A. Solving integration problems of e-commerce standards and initiatives through ontological mappings.International Journal of Intelligent Systems. 2001. No. 16.
  13. Fensel D., McGuinness D.L., Schulten E. et al. Ontologies and electronic commerce. IEEE Intelligent Systems. 2001. No. 16 (1). Pp. 8-14.
  14. Obrst L., Wray R.E., Liu H. Ontological engineering for B2B e-commerce. In: Proceedings of the International Conference on Formal Ontology in Information Systems (FOIS 2001). ACM Press, 2001. Pp. 117-126.
  15. Hepp M., Leukel J., Schmitz V. A quantitative analysis of eClass, UNSPSC, eOTD, and RNTD: Content, coverage, and maintenance. In: Proceedings of the IEEE International Conference on e-Business Engineering (ICEBE 2005). IEEE Computer Society, 2005. Pp. 572-581.
  16. Hepp M. Goodrelations: An ontology for describing products and services offers on the web. In: Proceedings of the 16th International Conference, Knowledge Engineering and Knowledge Management Conference (EKAW 2008), LNCS, Vol. 5268, Springer, 2008, pp. 329-346
  17. Cuadrado A.F., de la Torre E.V. SIS: Semantic Intelligent Search engine from heterogeneous information sources applied to e-commerce. GI Jahrestagung. 2008. No. 2. Pp. 700-705.
  18. Schuster D., Walther M., Braun I. Towards federated consumer product search from heterogeneous sources. In: Proceedings of IADIS International Conference WWW/Internet. 2008. Pp. 453-456.
  19. Walther M., Schuster D., Schill A. Federated product search with information enrichment using heterogeneous sources. In: Proceedings of the 12th International Conference on Business Information Systems (BIS 2009). Lecture Notes in Business Information Processing. Vol. 21. Springer, 2009. Pp. 73-84.
  20. Zhang L., Huang W. A framework for an ontology-based e-commerce product information retrieval system. Journal of Computers. Academy Publisher. 2009. No. 4 (6). Pp. 439-440.
  21. Oyelade O., Junaidu S., Obiniyi A. Semantic web framework for e-commerce based on OWL. IJCSI International Journal of Computer Science. 2014. Vol. 11. Issue 3. No. 2. Pp. 1694-0814. URL: 1694-0784.www.IJCSI.org
  22. Mao M., Chen S., Zhang F. et al. Hybrid ecommerce recommendation model incorporating product taxonomy and folksonomy. Knowledge-Based Systems. 2021. Vol. 214.
  23. Kejriwal M., Shen K., Ni Ch.-Ch., Torzec N. An evaluation and annotation methodology for product category matching in e-commerce.Computers in Industry. 2021. Vol. 131.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».