Genetic Programming and Object Modeling of Manipulation Robots

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The application of a genetic algorithm to solve the inverse kinematics problem of manipulative robots is considered. The basic concepts of the method of finding solutions using a genetic algorithm are defined. A block diagram of a simple genetic algorithm is presented. It is justified to use multiprocessor computing systems (transputers) to calculate genetic operators. This will greatly increase the efficiency of genetic algorithms. Manipulation systems with three and four links are selected as examples. The problem statement consisted in determining the hinge coordinates of an industrial robot by the specified Cartesian coordinates of the position of the center of the tool (TCP – Tool Center Point) installed on its final link. The results obtained confirm the effectiveness of genetic algorithms in solving inverse kinematics problems of industrial (manipulation) robots. Based on graph theory, the genetic programming procedure is defined as a way to find optimal kinematic structures of robot manipulation systems. The use of genetic programming for modification of object models of manipulation robots is shown. The object representation of the dynamic model of manipulation robots is considered. It is noted that the recombination of objects corresponding to mathematical expressions having mechanical meaning requires kinematic correspondence of the objects used. It is proposed to draw up object diagrams using computer programs that automate this process based on the principle of visual programming (Low-code).

作者简介

Oleg Krakhmalev

Financial University under the Government of the Russian Federation

编辑信件的主要联系方式.
Email: onkrakhmalev@fa.ru
ORCID iD: 0000-0002-9388-4137

Candidate of Engineering, Associate Professor; associate professor at the Department of Data Analysis and Machine Learning of the Financial University under the Government of the Russian Federation

俄罗斯联邦, Moscow

参考

  1. Al Tahtawi A., Agni M., Hendrawati T. Small-scale robot arm design with pick and place mission based on inverse kinematics. Journal of Robotics and Control. 2021. No. 2. P. 6. DOI: https://doi.org/10.18196/jrc.26124
  2. Byun G., Kikuuwe R. Stiff and safe task-space position and attitude controller for robotic manipulators. Robomech J. 2020. No. 7. P. 18. DOI: https://doi.org/10.1186/s40648-020-00166-1
  3. Ferrentino E., Chiacchio P. On the optimal resolution of inverse kinematics for redundant manipulators using a topological analysis. J. Mechanisms Robotics. 2020. No. 12 (3). P. 031002. DOI: https://doi.org/10.1115/1.4045178
  4. Kalyayev A.V., Galuyev G.A. Digital neurocomputer VLSI-systems with parallel architecture. In: International Neural Network Conference. Dordrecht: Springer, 1990. DOI: https://doi.org/10.1007/978-94-009-0643-3_17
  5. Karpińska J., Tchoń K. Performance-oriented design of in- verse kinematics algorithms: Extended Jacobian approxi-mation of the Jacobian pseudo-inverse. J. Mechanisms Robotics. 2012. No. 4 (2). P. 021008. DOI: https://doi.org/10.1115/1.4006192
  6. Krakhmalev N.O., Korostelyov D.A. Solutions of the inverse kinematic problem for manipulation robots based on the genetic algorithm. IOP Conf. Ser.: Mater. Sci. Eng. 2020. No. 747. P. 012117. DOI: https://doi.org/10.1088/1757-899X/747/1/012117
  7. Krakhmalev O., Krakhmalev N., Gataullin S. et al. Mathe-matics model for 6-DOF joints manipulation robots. Mathe-matics. 2021. No. 9. P. 2828. DOI: https://doi.org/10.3390/math9212828
  8. Krakhmalev O. Object-oriented modeling of manipulation systems dynamics based on transformation matrices of homo-geneous coordinates. Robotics and Technical Cybernetics. 2017. No. 2 (15). Pp. 32–36.
  9. Krakhmalev O. Object-oriented simulation of robots’ mani-pulation systems. Robotics and Technical Cybernetics. 2018. No. 4 (21). Pp. 41–47. DOI: https://doi.org/10.31776/RTCJ.6406
  10. Krakhmalev O. Designing object diagrams and the method of structural mutations in models of robots’ manipulation systems. Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”. Smart Innovation. Systems and Technologies. 2020. No. 154. Pp. 209–221. URL: https://link.springer.com/chapter/10.1007/978-981-13-9267-2_18
  11. Krakhmalev O.N. Use of structural mutations in object-oriented mathematical models of robot manipulation systems. Mathematical Models and Computer Simulations. 2020. No. 12 (1). Pp. 90–98. DOI: https://doi.org/10.1134/S023408791906008X
  12. Krakhmalev O., Korchagin S., Pleshakova E. et al. Parallel computational algorithm for object‐oriented modeling of manipulation robots. Mathematics. 2021. No. 9. P. 2886. DOI: https://doi.org/10.3390/math9222886
  13. Liu Q., Tian W., Li B., Ma Y. Kinematics of a 5-axis hybrid robot near singular configurations. Robotics and Computer-Integrated Manufacturing. 2022. No. 75. P. 102294. DOI: https://doi.org/10.1016/j.rcim.2021.102294
  14. Malik A., Henderson T., Prazenica R. Multi-objective swarm intelligence trajectory generation for a 7 degree of freedom robotic manipulator. Robotics. 2021. No. 10. P. 127. DOI: https://doi.org/10.3390/robotics10040127
  15. Malik A., Lischuk Y., Henderson T., Prazenica R. A deep reinforcement-learning approach for inverse kinematics solution of a high degree of freedom robotic manipulator. Robotics. 2022. No. 11. P. 44. DOI: https://doi.org/10.3390/robotics11020044
  16. Marsono M., Yoto Y., Suyetno A., Nurmalasari R. Design and programming of 5 axis manipulator robot with GrblGru open source software on preparing vocational students’ robotic skills. Journal of Robotics and Control. 2021. No. 2. P. 6. DOI: https://doi.org/10.18196/jrc.26134
  17. Strey A., Avellana N., Holgado R. et al. A configurable parallel neurocomputer. In: Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, November 20–23, 1995. doi: 10.1109/ANNES.1995.499438
  18. Tian W., Mou M., Yang J., Yin F. Kinematic calibration of a 5-DOF hybrid kinematic machine tool by considering the ill-posed identification problem using regularisation method. Robotics and Computer-Integrated Manufacturing. 2019. No. 60. Pp. 49–62. DOI: https://doi.org/10.1016/j.rcim.2019.05.016
  19. Torchigin V.P., Kobyakov A.E. Neurocomputers based on massively parallel architecture using optical means. In: Proceedings of SPIE. The International Society for Optical Engineering, December 1994. DOI: https://doi.org/10.1117/12.195591
  20. Tringali A., Cocuzza S. Globally optimal inverse kinematics method for a redundant robot manipulator with linear and nonlinear constraints. Robotics. 2020. No. 9. P. 61. DOI: https://doi.org/10.3390/robotics9030061
  21. Wajiansyah A., Supriadi S., Gaffar A.F., Putra A.B. Modeling of 2-DOF hexapod leg using analytical method. Journal of Robotics and Control. 2021. No. 2. P. 5. DOI: https://doi.org/10.18196/jrc.25119
  22. Ye H., Wang D., Wu J. et al. Forward and inverse kinematics of a 5-DOF hybrid robot for composite material machining. Robotics and Computer-Integrated Manufacturing. 2020. No. 65. P. 101961. DOI: https://doi.org/10.1016/j.rcim.2020. 101961
  23. Krakhmalev O.N. Object modeling in the kinematics of manipulative robots. Neurocomputers: Development, Application. 2022. No. 5. Pp. 55–66. (In Rus.) DOI: https://doi.org/10.18127/j19998554-202205-06

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. A simple genetic algorithm

下载 (109KB)
3. Fig. 2. 3-DOF manipulation system

下载 (82KB)
4. Fig. 3. 4-DOF manipulation system

下载 (83KB)
5. Fig. 4. Mean fitness calculations (1)

下载 (57KB)
6. Fig. 5. Mean fitness calculations (2)

下载 (53KB)
7. Fig. 6. Chromosomes of parents: a – parent 1; b – parent 2

下载 (41KB)
8. Fig. 7. Chromosomes of descendants: a – descendant 1, b – descendant 2

下载 (41KB)
9. Fig. 8. Object scheme of dynamic model (4)

下载 (14KB)
10. Fig. 9. Object scheme of element m123

下载 (34KB)
11. Fig. 10. Chromosomes of the 1st and 2nd parents of the element m123

下载 (36KB)
12. Fig. 11. Recombination of genes in chromosomes of the 1st and 2nd parents of the element m123

下载 (52KB)
13. Fig. 12. Chromosomes of individuals of the 1st and 2nd descendants of the element m123

下载 (37KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».