Mathematical Model of Economic Information

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article shows that economic information can be formally described using an information field, which is a topological space with an introduced system of subsets that is closed with respect to the union operation. This system of subsets consists of information quanta – sets of information that can be used by a subject when making economic decisions. On this information field, a set function is introduced, defined on information quanta, which has the meaning of the economic value of the information quanta when the subject solves an economic problem. Many economic problems can be described by optimization problems, when a subject need to make a certain choice from a set of feasible solutions, and by game-theoretic models, when it is necessary to choose the best strategy in the face of opposition from other subjects. For these models, it is shown how a function can be constructed to evaluate the economic usefulness of information quanta.

About the authors

Roman V. Shamin

MIREA – Russian Technological University

Author for correspondence.
Email: shamin@mirea.ru
ORCID iD: 0000-0002-3198-7501

Dr. Sci. (Phys.-Math.), Professor, Department of Enterprise Programming, Institute of Advanced Technologies and Industrial Programming

Russian Federation, Moscow

Polina Yu. Grosheva

MIREA – Russian Technological University

Email: grosheva@mirea.ru
ORCID iD: 0000-0001-7546-6903

Cand. Sci. (Econ.), associate professor, Department of Enterprise Programming, Institute of Advanced Technologies and Industrial Programming

Russian Federation, Moscow

Stanislav O. Golovanov

MIREA – Russian Technological University

Email: golovanov@mirea.ru

postgraduate student, Department of Enterprise Programming, Institute of Advanced Technologies and Industrial Programming

Russian Federation, Moscow

References

  1. Brouty X., Garcin M. Fractal properties, information theory, and market efficiency. In: Chaos, Solitons & Fractals. 2024. Vol. 180. No. art. 114543. doi: 10.1016/j.chaos.2024.114543.
  2. Friedland G. Information theory. 2023. doi: 10.1007/978-3-031-39477-5_4.
  3. Harris Z. Theory of language and information: A mathematical approach. 2023. doi: 10.1093/oso/9780198242246.001.0001.
  4. Krugly A. The relational approach to the mathematical model of meaning of information. Metaphysics. 2021. Pp. 70–91. doi: 10.22363/2224-7580-2021-3-70-91.
  5. Lindgren K. Information theory for complex systems: An information perspective on complexity in dynamical systems and statistical mechanics. 2024. doi: 10.1007/978-3-662-68214-2.
  6. Manca V., Bonnici V. Information theory. 2023. doi: 10.1007/978-3-031-44501-9_3.
  7. Shamin R.V., Uryngaliyeva A.A., Shermadini M.V., Filippov P.G. The model of evolutionary optimization of production processes at advanced technological enterprises. Espacios. 2019. Vol. 40. No. 20. P. 26.
  8. Danko E.V., Obrabin N.M. Investigation of the expected usefulness of additional information when using the subjective utility function. In: Proceedings of the seminar on geometry and mathematical modeling. 2020. No. 6. Pp. 48–51.
  9. Kugotova M.N. Discrete mathematical model of information dissemination. In: Actual problems of applied mathematics and physics. Materials of the international scientific conference. 2017. P. 114.
  10. Neumann J. von, Morgenstern O. Game theory and economic behavior. Moscow: Nauka, 1970.
  11. Timofeev S.V. Mathematical model of dissemination of new information in society. Questions of the Theory and Practice of Journalism. 2020. Vol. 9. No. 1. Pp. 5–17. (In Rus.)
  12. Khalikov M.A., Lyakh D.A., Deryabina A.I. A model for estimating the value of information on tax audit. Bulletin of the Altai Academy of Economics and Law. 2020. No. 4-1. Pp. 141–148. (In Rus.)
  13. Hartley R.V.L. Transmission of information. In: Information theory and its applications. Moscow: Fizmatgiz, 1959.
  14. Shamin R.V., Shmeleva A.G., Shermadini M.V. et al. Quantitative assessment of the effectiveness of innovations. Proceedings of the NSTU named after R.E. Alekseev. 2019. No. 1 (124). Pp. 61–66. (In Rus.)
  15. Shannon K. Works on information theory and cybernetics. Moscow: Publishing House of Foreign Literature, 1963.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».