Machine Learning Methods for Determining Optimal Irrigation Timing for Corn

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The global forecast for increasing food production on irrigated lands poses the task of optimizing irrigation. Saving water resources is especially important in arid areas, where it is very important to clearly understand what to water, when and in what quantity. The article proposes a method for optimizing the irrigation process of agricultural crops using a control system based on visible and hyperspectral images. We proposed an algorithm and developed a system for obtaining a map of corn irrigation in the low-delay mode. The system can be installed on a circular sprinkler and consists of 8 IP cameras connected to a video recorder connected to a laptop and a hyperspectral camera synchronized with one of the IP cameras. The algorithm for establishing irrigation rates consists of three stages. The stage of establishing the average stage of plant growth (a site of 6–8 plants), the stage of determining the amount of water in plants on this site and the stage of establishing plant irrigation rates directly. In the first case, we used a modified DenseNet121 convolutional neural network with a compression and excitation (SE) block, trained on visible images from an IP camera and allowing to identify the growth stage according to the Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH) scale with an accuracy of up to 92%. In the second case, we used hyperspectral images, which, together with the data on the development stage, determine the amount of water in plants. Hyperspectral images were converted into a 2D-model using wavelet transforms and then classified using the 2D-CapsNet capsule neural network. The accuracy of detecting a lack or excess of water in plants was 94%. At the third stage, the data obtained from the two previous stages and a number of characteristics related to the current state of the atmosphere and the field were combined into a separate classifier based on a neural network – a multilayer perceptron, which marked the areas of the field with increased and decreased irrigation rates. The resulting map was then used to irrigate the field. This reduced the amount of water used by 7.4%. At the same time, the efficiency of irrigation water use, linked to the yield of agricultural crops per unit of water used, increased due to an increase in yield by 8.4%.

About the authors

Sergey T. Gataullin

MIREA – Russian Technological University

Author for correspondence.
Email: gataullin@mirea.ru
ORCID iD: 0000-0002-0446-0552
Scopus Author ID: 57205436562
ResearcherId: AAX- 8389-2021

Cand. Sci. (Econ.); leading researcher, Institute of Advanced Technologies and Industrial Programming

Russian Federation, Moscow

Alexey V. Osipov

MIREA – Russian Technological University

Email: osipov_av@mirea.ru
ORCID iD: 0000-0002-1261-8559
Scopus Author ID: 57224632462
ResearcherId: AAB-5151-2022

Cand. Sci. (Phys.-Math.); associate professor, Institute of Advanced Technologies and Industrial Programming;

Russian Federation, Moscow

Ekaterina S. Pleshakova

MIREA – Russian Technological University

Email: pleshakova@mirea.ru
ORCID iD: 0000-0002-8806-1478
SPIN-code: 5152-8969
Scopus Author ID: 56471764200
ResearcherId: ABG-2302-2021

Cand. Sci. (Eng.); associate professor, Institute of Advanced Technologies and Industrial Programming

Russian Federation, Moscow

Alexander V. Yudin

MIREA – Russian Technological University

Email: yudin_a@mirea.ru
ORCID iD: 0000-0002-6802-8603
Scopus Author ID: 56018042000
ResearcherId: A-1665-2014

Dr. Sci. (Econ.); Head of the Department, Institute of Advanced Technologies and Industrial Programming

Russian Federation, Moscow

References

  1. Pereira L.S. Water agriculture and food: Challenges and issues. Water Resour. Manage. 2017. Vol. 31. No. 10. Pp. 2985–2999.
  2. Nikolaou G., Neocleous D., Christou A. et al. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy. 2020. Vol. 10. No. 8. P. 1120.
  3. Aragon B., Houborg R., Tu K. et al. CubeSats enable high spatiotemporal retrievals of crop-water use for precision agriculture. Remote Sens. 2018. Vol. 10. No. 12. P. 1867.
  4. Shafi U., Mumtaz R., García-Nieto J. et al. Precision agriculture techniques and practices: From considerations to applications. Sensors. 2019. Vol. 19. No. 17. P. 3796.
  5. Martos V., Ahmad A., Cartujo P., Ordoñez J. Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Appl. Sci. 2021. Vol. 11. No. 13. P. 5911.
  6. Monteleone S., Moraes E.A.D., de Faria B.T. et al. Exploring the adoption of precision agriculture for irrigation in the context of agriculture 4.0: The key role of Internet of Things. Sensors. 2020. Vol. 20. No. 24. P. 7091.
  7. da Silva Baptista B., Córcoles J.L., Colombo A., Moreno M.À. Feasibility of the use of variable speed drives in center pivot systems installed in plots with variable topography. Water. 2019. Vol. 11. No. 10. P. 2192.
  8. Mohamed A.Z., Peters R.T., Sarwar A. et al. Impact of the intermittency movement of center pivots on irrigation uniformity. Water. 2021. Vol. 13. No. 9. P. 1167.
  9. Rovelo C.O.R., Ruiz N.Z., Tolosa J.B. et al. Characterization and simulation of a low-pressure rotator spray plate sprinkler used in center pivot irrigation systems. Water. 2019. Vol. 11. No. 8. P. 1684.
  10. Rad S., Gan L., Chen X. et al. Sustainable water resources using corner pivot lateral a novel sprinkler irrigation system layout for small scale farms. Appl. Sci. 2018. Vol. 8. No. 12. P. 2601.
  11. Serrano J., Shahidian S., da Silva J.M. et al. Mapping management zones based on soil apparent electrical conductivity and remote sensing for implementation of variable rate irrigation – case study of corn under a center pivot. Water. 2020. Vol. 12. No. 12. P. 3427.
  12. Svedin J.D., Kerry R., Hansen N.C., Hopkins B.G. Identifying within-field spatial and temporal crop water stress to conserve irrigation resources with variable-rate irrigation. Agronomy. 2021. Vol. 11. No. 7. P. 1377.
  13. Shi X., Han W., Zhao T., Tang J. Decision support system for variable rate irrigation based on UAV multispectral remote sensing. Sensors. 2019. Vol. 19. No. 13. P. 2880.
  14. O’Shaughnessy S.A., Evett S.R., Colaizzi P.D. et al. Identifying advantages and disadvantages of variable rate irrigation: An updated review. Appl. Eng. Agricult. 2019. Vol. 35. No. 6. Pp. 837–852.
  15. García L., Parra L., Jimenez J.M. et al. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors. 2020. Vol. 20. No. 4. P. 1042.
  16. Keswani B., Mohapatra A.G., Mohanty A. et al. Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput. Appl. 2019. Vol. 31. No. 1. Pp. 277–292.
  17. Wang E., Attard S., Linton A. et al. Development of a closed-loop irrigation system for sugarcane farms using the Internet of Things. Comput. Electron. Agricult. 2020. Vol. 172.
  18. Kamienski C., Soininen J.-P., Taumberger M. et al. Smart water management platform: IoT-based precision irrigation for agriculture. Sensors. 2019. Vol. 19. No. 2. P. 276.
  19. Muangprathub J., Boonnam N., Kajornkasirat S. et al. IoT and agriculture data analysis for smart farm. Comput. Electron. Agricult. 2019. Vol. 156. Pp. 467–474.
  20. Bonfante A., Monaco E., Manna P. et al. LCIS DSS – an irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study. Agricult. Syst. 2019. Vol. 176.
  21. Campos N.G.S., Rocha A.R., Gondim R. et al. Smart & green: An Internet-of-Things framework for smart irrigation. Sensors. 2020. Vol. 20. No. 1. P. 190.
  22. Glória A., Dionisio C., Simões G. et al. Water management for sustainable irrigation systems using Internet-of-Things. Sensors. 2020. Vol. 20. No. 5. P. 1402.
  23. Kujawa S., Niedbała G. Artificial neural networks in agriculture. Agriculture. 2021. Vol. 11. No. 6. P. 497.
  24. Jha K., Doshi A., Patel P., Shah M. A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agricult. 2019. Vol. 2. Pp. 1–12.
  25. Linaza M.T., Posada J., Bund J. et al. Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy. 2021. Vol. 11. No. 6. P. 1227.
  26. Saiz-Rubio V., Rovira-Más F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy. 2020. Vol. 10. No. 2. P. 207.
  27. Benos L., Tagarakis A.C., Dolias G. et al. Machine learning in agriculture: A comprehensive updated review. Sensors. 2021. Vol. 21. No. 11. P. 3758.
  28. Cravero A., Sepúlveda S. Use and adaptations of machine learning in big data – applications in real cases in agriculture. Electronics. 2021. Vol. 10. No. 5. P. 552.
  29. van Klompenburg T., Kassahun A., Catal C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agricult. 2020. Vol. 177.
  30. Gonzalez-de-Santos P., Fernández R., Sepúlveda D. et al. Field robots for intelligent farms – Inhering features from industry. Agronomy. 2020. Vol. 10. No. 11. P. 1638.
  31. Goap A., Sharma D., Shukla A.K., Krishna C.R. An IoT based smart irrigation management system using Machine learning and open source technologies. Comput. Electron. Agricult. 2018. Vol. 155. Pp. 41–49.
  32. Nawandar N.K., Satpute V.R. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agricult. 2019. Vol. 162. Pp. 979–990.
  33. Mendes W.R., Araújo F.M.U., Dutta R., Heeren D.M. Fuzzy control system for variable rate irrigation using remote sensing. Expert Syst. Appl. 2019. Vol. 124. Pp. 13–24.
  34. Sun A.Y., Scanlon B.R. How can big data and machine learning benefit environment and water management: A survey of methods applications and future directions. Environ. Res. Lett. 2019. Vol. 14. No. 7.
  35. Chang C.-L., Lin K.-M. Smart agricultural machine with a computer vision-based weeding and variable-rate irrigation scheme. Robotics. 2018. Vol. 7. No. 3. P. 38.
  36. Kamyshova G., Solovyev D., Terekhova N., Kolganov D. Development of approaches to the intellectualization of irrigation control systems. Agriculture Digitalization and Organic Production. 2022. Vol. 245. Pp. 359–369.
  37. Torres-Sanchez R., Navarro-Hellin H., Guillamon-Frutos A. et al. A decision support system for irrigation management: Analysis and implementation of different learning techniques. Water. 2020. Vol. 12. No. 2. P. 548.
  38. Suntaranont B., Aramkul S., Kaewmoracharoen M., Champrasert P. Water irrigation decision support system for practical weir adjustment using artificial intelligence and machine learning techniques. Sustainability. 2020. Vol. 12. No. 5. P. 1763.
  39. Kashyap P.K., Kumar S., Jaiswal A. et al. Towards precision agriculture: IoT-enabled intelligent irrigation systems using deep learning neural network. IEEE Sensors J. 2021. Vol. 21. No. 16. Pp. 17479–17491.
  40. Diao W., Liu G., Zhang H. et al. Influences of soil bulk density and texture on estimation of surface soil moisture using spectral feature parameters and an artificial neural network algorithm. Agriculture. 2021. Vol. 11. No. 8. P. 710.
  41. Wang J., Peng J., Li H. et al. Soil salinity mapping using machine learning algorithms with the Sentinel-2 MSI in arid areas China. Remote Sens. 2021. Vol. 13. No. 2. P. 305.
  42. Diez F.J., Navas-Gracia L.M., Chico-Santamarta L. et al. Prediction of horizontal daily global solar irradiation using artificial neural networks (ANNs) in the castile and León region Spain. Agronomy. 2020. Vol. 10. No. 1. P. 96.
  43. D’Emilio A., Aiello R., Consoli S. et al. Artificial neural networks for predicting the water retention curve of sicilian agricultural soils. Water. 2018. Vol. 10. No. 10. P. 1431.
  44. Cáceres G., Millán P., Pereira M., Lozano D. Smart farm irrigation: Model predictive control for economic optimal irrigation in agriculture. Agronomy. 2021. Vol. 11. No. 9. P. 1810.
  45. Kamyshova G.N., Soloviov D.A., Kolganov D.A. et al. Neuromodeling in irrigation management for sustainable agriculture. Adv. Dyn. Syst. Appl. 2021. Vol. 16. No. 1. Pp. 159–170.
  46. Glória A., Cardoso J., Sebastião P. Sustainable irrigation system for farming supported by machine learning and real-time sensor data. Sensors. 2021. Vol. 21. No. 9. P. 3079.
  47. Yang W., Nigon T., Hao Z. et al. Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Comput. Electron. Agricult. 2021. Vol. 184.
  48. Pang Y., Shi Y., Gao S. et al. Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery. Comput. Electron. Agricult. 2020. Vol. 178.
  49. Zhong L., Hu L., Zhou H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019. Vol. 221. Pp. 430–443.
  50. Kuznetsova A., Maleva T., Soloviev V. Detecting apples in orchards using YOLOv3. Proc. ICCSA. 2020. Vol. 12249. Pp. 923–934.
  51. Kuznetsova A., Maleva T., Soloviev V. YOLOv5 versus YOLOv3 for apple detection. Cyber-Physical Systems: Modelling and Intelligent Control, Cham. 2021. Vol. 338. Pp. 349–358.
  52. Kamyshova G. et al. Artificial neural networks and computer vision’s-based phytoindication systems for variable rate irrigation improving. IEEE Access. 2022. Vol. 10. Pp. 8577–8589.
  53. Shu Meiyan, Dong Qizhou, Fei ShuaiPeng. et al. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images. Computers and Electronics in Agriculture. 2022. Vol. 197.
  54. Huang G. et al. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. С. 4700–4708.
  55. Tsapin D., Pitelinskiy K., Suvorov S. et al. Machine learning methods for the industrial robotic systems security. J. Comput Virol Hack Tech. 2023.
  56. Chunhua Liao, Jinfei Wang, Bo Shan. et al. Near real-time detection and forecasting of within-field phenology of winter wheat and corn using Sentinel-2 time-series data. ISPRS Journal of Photogrammetry and Remote Sensing. 2023. Vol. 196. Pp. 105–119.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a – Hyperspectral cube image of a field plot; b – corn canopy spectrum (OCS)

Download (180KB)
3. Fig. 2. Features of the formation of a dataset of hyperspectral images in an irrigated field

Download (284KB)
4. Fig. 3. The second (a) and first (b) derivatives with respect to wavelength, respectively, of the corn vegetation spectrum the corn vegetation spectrum (c)

Download (180KB)
5. Fig. 4. Wavelet transform of the graphs of dependencies of the second (a) and first (b) derivatives with respect to wavelength, respectively, from the spectrum of the corn vegetation cover of the spectrum of the corn vegetation cover (c)

Download (292KB)
6. Fig. 5. Architecture of CNN DenseNet121+ SE

Download (817KB)
7. Fig. 6. Block representation of the 2D-CapsNet network model for 2D-image classification using wavelet transform of hyperspectral data

Download (353KB)
8. Fig. 7. Scheme of the proposed approach to identifying the state of corn crops based on the 2D-CapsNet method

Download (304KB)
9. Fig. 8. Hyperspectral plots of maize plants: a – with different water contents in plants at the BBCH-43 growth stage; b – at different growth stages with water content FMCc = 2.7–3%

Download (320KB)
10. Fig. 9. Second (a) and first (b) derivatives with respect to wavelength, respectively, of the spectrum of the corn vegetation cover; the spectrum of the corn vegetation cover (c); 1–5 – the hyperspectrum is taken from sites of five different classes. The graph number corresponds to the class number

Download (349KB)
11. Fig. 10. Wavelet transform of the dependence graphs of the spectrum of corn vegetation cover for five classes

Download (444KB)
12. Fig. 11. Using t-SNE to visualize 2D-CapsNet capsule-level data: 1–5 are the five classes labeled by agricultural scientists according to the BBCH stages

Download (297KB)
13. Fig. 12. Using t-SNE method to visualize 2D-CapsNet capsule-level data

Download (296KB)
14. Fig. 13. Algorithm for creating an irrigation map: a – development map; b – map of the amount of water in corn plants; c – current NDWI; d – map of soil water availability; e – map of division into sectors for irrigation

Download (605KB)
15. Fig. 14. Distribution of percentages of total area under the influence of dynamic prescription

Download (110KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».