Analysis of the effectiveness of neural network architectures for protecting industrial systems from targeted social engineering attacks
- Авторлар: Krasnoslobodtseva D.B.1, Yudin A.V.1
-
Мекемелер:
- MIREA – Russian Technological University
- Шығарылым: Том 12, № 5 (2025)
- Беттер: 95-109
- Бөлім: MANAGEMENT IN ORGANIZATIONAL SYSTEMS
- URL: https://journal-vniispk.ru/2313-223X/article/view/358388
- DOI: https://doi.org/10.33693/2313-223X-2025-12-5-95-109
- EDN: https://elibrary.ru/EQCDFD
- ID: 358388
Дәйексөз келтіру
Аннотация
This study presents a comprehensive comparative analysis of the effectiveness of modern neural network architectures for countering targeted social engineering attacks on industrial systems. The paper characterizes the main social engineering methods, based on which a group of them is identified that have a critical impact on domestic production. The experimental part of the study is based on an open dataset containing 651 191 URLs categorized into four types: safe resources, defaced links, phishing resources, and malware distributors. The paper presents a systematic evaluation of both classical and innovative machine learning approaches, including Kolmogorov-Arnold networks (KAN), graph neural networks (GNN), capsule neural networks (CapsNets), and their hybrid combinations. The results demonstrate significant superiority of hybrid architectures, where the combination of CNN + LSTM achieved a maximum accuracy of 92.29%, and CNN + KAN demonstrated a result of 92.00%. A detailed analysis revealed the specific effectiveness of various architectures for specific threat categories: CapsNets demonstrated the best results in identifying safe resources (98.60%), while CNN + LSTM were most effective in detecting phishing attacks (72.76%). The scientific novelty of this work lies in establishing a correlation between the type of neural network architecture and the nature of a potential cyberthreat, which creates a methodological basis for developing next-generation adaptive security systems for industrial infrastructure.
Толық мәтін
##article.viewOnOriginalSite##Авторлар туралы
Darya Krasnoslobodtseva
MIREA – Russian Technological University
Хат алмасуға жауапты Автор.
Email: krasnoslobodtseva@mirea.ru
ORCID iD: 0009-0008-5792-3240
SPIN-код: 1530-0763
postgraduate student, intern researcher, Scientific and Educational Laboratory of Industrial Programming, Institute for Advanced Technologies and Industrial Programming, lecturer, 1C Technology Center, Institute of Management Technologies
Ресей, MoscowAlexander Yudin
MIREA – Russian Technological University
Email: yudin_a@mirea.ru
SPIN-код: 4917-0840
Dr. Sci. (Econ.), Cand. Sci. (Phys.-Math.), Associate Professor, Head, Department of Industrial Programming, chief researcher, Research and Educational Laboratory of Industrial Programming, Institute of Advanced Technologies and Industrial Programming
Ресей, MoscowӘдебиет тізімі
- Pleshakova E., Osipov A., Gataullin S. et al. Next gen cybersecurity paradigm towards artificial general intelligence: Russian market challenges and future global technological trends. Journal of Computer Virology and Hacking Techniques. 2024. Vol. 20. Pp. 429–440. doi: 10.1007/s11416-024-00529-x. EDN: TTGIQX.
- Chechkin A., Pleshakova E., Gataullin S. A Hybrid KAN-BiLSTM transformer with multi-domain dynamic attention model for cybersecurity. Technologies. 2025. Vol. 13. No. 6. doi: 10.3390/technologies13060223. EDN: DEQJXX.
- Osipov A.V., Sapozhnikov A.E., Pleshakova E.S., Gataullin S.T. Machine learning methods for recognizing the emotional state of a subscriber of telecommunication systems. Information Technologies and Computing Systems. 2024. No. 1. Pp. 23–35. (In Rus.). doi: 10.14357/20718632240103. EDN: IRVBHI.
- Osipov A., Pleshakova E., Liu Ya., Gataullin S. Machine learning methods for speech emotion recognition on telecommunication systems. Journal of Computer Virology and Hacking Techniques. 2023. No. 20 (3). Pp. 415–428. doi: 10.1007/s11416-023-00500-2. EDN: GIIZVA.
- Pleshakova E.S., Gataullin S.T., Osipov A.V. et al. Effective classification of texts in natural language and determination of speech tonality using selected machine learning methods. Security Issues. 2022. No. 4. Pp. 1–14. (In Rus.). doi: 10.25136/2409-7543.2022.4.38658. EDN: UPWMCV.
- Pleshakova E.S., Filimonov A.V., Osipov A.V., Gataullin S.T. Identification of cyberbullying by neural network methods. Security Issues. 2022. No. 3. Pp. 28–38. doi: 10.25136/2409-7543.2022.3.38488. EDN: BEINMG.
- Filimonov A.V., Osipov A.V., Pleshakova E.S., Gataullin S.T. Neural network methods for recognizing speech emotions to counter fraud in telecommunication systems. Cybersecurity Issues. 2022. No. 6 (52). Pp. 83–92. (In Rus.). doi: 10.21681/2311-3456-2022-6-83-92. EDN: YELMTC.
- Pleshakova E.S., Gataullin S.T., Osipov A.V. et al. Application of thematic modeling methods in text topic recognition tasks for detecting telephone fraud. Software Systems and Computational Methods. 2022. No. 3. Pp. 14–27. (In Rus.). doi: 10.7256/2454-0714.2022.3.38770. EDN: RPLSLQ.
- Nikitin P.V., Osipov A.V., Pleshakova E.S. et al. Recognition of emotions by audio signals as one of the ways to combat telephone fraud. Software Systems and Computational Methods. 2022. No. 3. Pp. 1–13. (In Rus.). doi: 10.7256/2454-0714.2022.3.38674. EDN: ZBVOCN.
- Pleshakova E.S., Gataullin S.T., Osipov A.V., Bylevskii P.G. Legislative prevention of new financial technologies threats. National Security / Nota Bene. 2022. No. 6. Pp. 62–70. doi: 10.7256/2454-0668.2022.6.39275. EDN: MRAOCI.
- Pleshakova E.S., Gataullin S.T., Osipov A.V. et al. Recognition of human emotions by voice in the fight against telephone fraud. National Security / Nota Bene. 2022. No. 5. Pp. 11–29. (In Rus.). doi: 10.7256/2454-0668.2022.5.38782. EDN: SGTJAV.
- Goncharov K., Pleshakova E., Shelyagin A., Gataullin S. Combating telephone fraud based on voice recognition using machine learning. Information Resources of Russia. 2022. No. 4 (188). Pp. 96–104. (In Rus.). doi: 10.52815/0204-3653_2022_04188_96. EDN: WUQPFD.
- Bylevsky P.G., Gataullin S.T., Pleshakova E.S. Modernization of methodology: strategy and tactics of countering “telephone fraud”. Journal of High Humanitarian Technologies. 2023. No. 1 (1). Pp. 6–16. EDN: BEZHAD.
- Pleshakova E.S., Gataullin S.T., Osipov, A.V. Bylevskii P.G. The factor of complex interaction in responding to telephone fraud. Security Issues. 2023. No. 1. P. 1–9. doi: 10.25136/2409-7543.2023.1.39274. EDN: LWCDNH.
- Kontorovich V., Kuraev A., Bobrovsky D. et al. Countering the threats of telephone fraud by means of artificial intelligence. Information Resources of Russia. 2023. No. 2 (191). Pp. 72–81. EDN: KWGFGD.
- Filimonov A.V., Pleshakova E.S., Osipov A.V. et al. Detection and prevention of telephone fraud based on voice recognition using neural network methods. Moscow: Rusains, 2023. 164 p. ISBN: 978-5-466-02819-5. EDN: NFAOPS.
- Bespalova N., Osipov A., Pleshakova E., Gataullin S. Financial sector network security analysis. Processing of the 17th International Conference on Large-scale Systems Development Management (MLSD). Moscow, 2024. Pp. 1–4. doi: 10.1109/MLSD61779.2024.10739559.
- Pugacheva D.B., Yudina M.V. Research of Software Solutions to Determine the Optimal Solution for the Specified Parameters. Computational Nanotechnology. 2024. Vol. 11. No. 5. Pp. 78-86. (In Rus.). doi: 10.33693/2313-223X-2024-11-5-78-86. EDN: BUKIIM.
Қосымша файлдар








