Усреднение по группам и изменение коэффициента Джини

Обложка

Цитировать

Полный текст

Аннотация

Известно, что разбиение общества на группы с последующим усреднением в каждой группе приводит к уменьшению коэффициента Джини. Изучается вопрос, насколько может уменьшиться коэффициент Джини при переходе к данной кусочно-линейной функции Лоренца. Получены весьма наглядные (так как они выражены через геометрические параметры графика кусочно-линейной функции Лоренца, такие как длины ее звеньев и углы между последовательными звеньями) оценки сверху на максимально возможное изменение коэффициента Джини при ограничении на величину доли групп либо на величину разности между усредненными значениями признака по данной группе и по предшествующей группе. Показано, что существуют кривые Лоренца с коэффициентом Джини, сколь угодно близким к единице, и при этом с коэффициентом Джини усредненного общества, сколь угодно близким к нулю.

Об авторах

Олег Иванович Павлов

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: pavlov-oi@rudn.ru

кандидат физико-математических наук, доцент кафедры экономико-математического моделирования, экономический факультет

Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6

Ольга Юрьевна Павлова

Всероссийская заочная многопредметная школа

Email: lolgau@yandex.ru

кандидат физико-математических наук, доцент кафедры высшей математики

Российская Федерация, 119234, Москва, Воробьевы горы, В-234

Список литературы

  1. Arnold, B.C. (2007). The Lorenz curve: Evergreen after 100 years. In S. Betti, A. Lemmi (Eds.), Advances in Income Inequality Concentration Measures (pp. 12-24). New York: Routledge.
  2. Astashenko, A.N., & Malykhin, V.I. (2012). Income inequality measures. LAP Lambert Academic Publishing.
  3. Boltyanskij, V.G., Sidorov, Yu.V., & Shabunin, M.I. (1974). Lectures and problems on elementary mathematics. Moscow: Nauka Publ. (In Russ.)
  4. Ceriani, L., & Verme, P. (2012). The origins of the Gini index: Extracts from Variabilità e Mutabilità (1912) by Corrado Gini. J. Econ. Inequal, 10, 412-443.
  5. Farris, F.A. (2010). The Gini index and measures of inequality. American Mathematical Monthly, 117(10), 851-864.
  6. Fellman, J. (2012). Estimation of Gini coefficients using Lorenz curves. Journal of Statistical and Econometric Methods, 1(2), 31-38.
  7. Gastwirth, J. (1972). The estimation of the Lorenz curve and Gini index. Rev. Econom. Statist, 54, 306-316.
  8. Gini, C. (1912). Variabilità e mutuabilità: Contributo allo studio delle distribuzioni e delle relazioni statistiche. Bologna: C. Cuppini.
  9. Golden, J. (2008). A simple geometric approach to approximating the Gini coefficient. The Journal of Economic Education, 39(1), 68-77
  10. Hoover, E. (1936). The measurement of industrial localization. The Review of Economics and Statistics, 18, 162-171.
  11. Kakwani, N. (1980). Income inequality and poverty: Methods of estimation and poverty applications. Oxford University Press.
  12. Kämpke, T., & Radermacher, F.J. (2015). Income modeling and balancing. A rigorous treatment of distribution patterns. Lecture Notes in Economics and Mathematical Systems, 679, 44-53.
  13. Pavlov, O.I., & Pavlova, O.Yu. (2016). The Lorenz curve and a mathematical definition of the middle class. Management of Economic Systems, (12). Retrieved March 15, 2021, from http://uecs.ru/uecs-94-942016/item/4239-2016-12-24-07-45-16
  14. Pavlov, O.I., & Pavlova, O.Yu. (2018). Differential deviation and the Gini coefficient. Russian Economics Online-Journal, (4). Retrieved March 15, 2021, from http://www.e-rej.ru/publications/176/%D0%9F/
  15. Zorich, V.A. (2019). Mathematical analysis (part 1). Moscow: MCCME Publ. (In Russ.)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».