Fahlores from porphyry Cu-(Mo) deposits of the Urals

封面

如何引用文章

全文:

详细

The paper describes chemistry of tetrahedrite-tennantite group minerals from three porphyry deposits of the Urals: Mikheevskoe and Tomino porphyry copper deposits on the South Urals and Talitsa Mo porphyry deposit on the Middle Urals. In the deposits studied tetrahedrite-tennantite group minerals deposited either with late mineral assemblages of the porphyry stage or within late subepithermal veins. They vary in composition from tennantite to tetrahedrite with variable Fe and Zn contents. Contents of Cd, Co, Te, Bi, Ag, Se Te, Bi, Ag, S are usually insignificant. However argentotetrahedrite-(Fe) was described within the latest assemblage at the Mikheevskoe deposit, while tennantite-tetrahedrite-(Cd) was noted overgrowing bornite at the Tomino deposit. Most tetrahedrite group minerals do not establish complicated chemical zoning: they are either homogeneous or comprise a core of intermediate tennantite-tetrahedrite composition and a rim with dominating tetrahedrite end-member. This evidences relatively quiet deposition environment with no dramatic variations of PTx parameters which is rather typical for porphyry systems. Comparison with published data shows the tetrahedrite group minerals studied are similar to those from «transitional» subepithermal mineralization.

作者简介

О. Plotinskaya

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS

Email: plotin@igem.ru
俄罗斯联邦, Staromonetny per. 35, Moscow, 119017

Е. Kovalchuk

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS

编辑信件的主要联系方式.
Email: plotin@igem.ru
俄罗斯联邦, Staromonetny per. 35, Moscow, 119017

参考

  1. Azovskova O.B., Grabezhev A.I. (2008) The Talitsa porphyry copper-molybdenum deposit, the first object of a subalkaline porphyry system in the Central Urals. Doklady Earth Sciences, 418(1), 99–102.
  2. Biagioni C., George L.L., Cook N.J., Makovicky E., Moëlo Y., Pasero M., Sejkora J., Stanley C.J., Welch M.D., Bosi F. (2020) The tetrahedrite group: Nomenclature and classification. American Mineralogist, 105, 109–122.
  3. Biagioni C., Kasatkin A., Sejkora J., Nestola F., Škoda R. (2022) Tennantite-(Cd), Cu6(Cu4Cd2)As4S13, from the Berenguela mining district, Bolivia: The first Cd-member of the tetrahedrite group. Mineralogical Magazine, 1–22. doi: 10.1180/mgm.2022.61
  4. Catchpole H., Kouzmanov K., Fontbote L. (2012) Copper-excess stannoidite and tennantite-tetrahedrite as proxies for hydrothermal fluid evolution in a zoned Cordilleran type base-metal district, Morococha, Central Peru. The Canadian Mineralogist, 50, 719−743.
  5. Dobbe R. (1992) Manganoan-cadmian tetrahedrite from the Tunaberg Cu-Co deposit, Bergslagen, central Sweden. Mineralogical Magazine, 56(382), 113–115.
  6. [Gold miner’s bulletin] (2017) https://gold.1prime.ru/news/20170920/226023.html (last addressed 06/05/2022) (in Russian)
  7. Grabezhev A.I., Belgorodskii E.A. (1992) [Ore-bearing granitoids and metasomatites of copper porphyry deposits]. Yekaterinburg, IGG UrO RAN, 199 p. (in Russian)
  8. Grabezhev A.I., Ronkin Y.L. (2011) [U-Pb age of zircons from ore-bearing granitoids of the South Urals porphyry-copper deposits]. Lithosphere [Litosfera], 11(3), 104–116. (in Russian)
  9. Grabezhev A.I., Kuznetsov N.S., Puzhakov B.A. (1998) [Ore and alteration zoning of sodium type copper-porphyry column (paragonite-bearing aureoles, the Urals)]. Yekaterinburg, UGGGA, 172 p. (in Russian)
  10. Groznova E.O., Plotinskaya O.Yu. (2021) [Fluid inclusions as a tool for studying ore-forming processes in porphyry-epithermal systems of the Urals]. XХVII Vserossiyskaya nauchnaya konferentsiya «Uralskaya mineralogicheskaya shkola-2021» [XХVII All-Russian conference «Uralian mineralogical school-2021»]. Yekaterinburg, OOO Universalnaya Tipographiya «Alfa Print», p. 33–35. (in Russian)
  11. Groznova E., Abramov S., Plotinskaia O., Bocharov V.N. (2019) Mikheevskoe porphyry copper deposit: conditions of ore formation; insights from fluid inclusion study and alteration mineralogy. Acta mineralogica-petrographica. Abstract series, 10, 48.
  12. Jia D., Fu Z., Zhang H., Zhao C. (1988) The first discovery of Cd-freibergite in China. Acta Mineralogica Sinica, 8, 136–137. (in Chinese, with English abstract).
  13. Kotelnikov A.R., Suk, N.I., Kotelnikova Z.A., Tschekina T.I., Kalinin G.M. (2012) [Mineral geothermometers for low-temperature paragenesis]. Vestnik Otdelenia nauk o Zemle [Bulletin of the Earth Sciences Branch of RAS], 4, NZ9001, https://doi.org/10.2205/2012NZ_ASEMPG
  14. Krismer M., Vavtar F., Tropper P., Kaindl R., Sartory B. (2011) The chemical composition of tetrahedrite-tennantite ores from the prehistoric and historic Schwaz and Brixlegg mining areas (North Tyrol, Austria). European Journal of Mineralogy, 23, 925−936.
  15. Lynch J.V.G. (1989) Large-scale hydrothermal zoning reflected in the tetrahedrite-freibergite solid solution, Keno Hill Ag-Pb-Zn district, Yukon. The Canadian Mineralogist, 27, 383−400.
  16. Lyubimtseva N.G., Bortnikov N.S., Borisovsky S.E., Prokofiev V.Y., Vikent’eva O.V. (2018) Fahlore and sphalerite from the darasun gold deposit in the Eastern Transbaikal region, Russia: I. Mineral assemblages and intergrowths, chemical composition, and its evolution. Geology of Ore Deposits, 60(2), 93–120.
  17. Lyubimtseva N.G., Prokof’ev V.Y., Bortnikov N.S. (2021) Coexisting tetrahedrite–(Zn) and sphalerite at the Teremki gold-ore deposit (East Transbaikalia): chemical composition and formation conditions. Geology of Ore Deposits, 63(5), 454–464.
  18. Marushchenko L.I., Baksheev I.A., Nagornaya E.V., Chitalin A.F., Nikolaev Yu.N., Vlasov E.A. (2018) Compositional evolution of the tetrahedrite solid solution in porphyry-epithermal system: A case study of the Baimka Cu-Mo-Au trend, Chukchi Peninsula, Russia. Ore Geology Reviews, 103, 21–37.
  19. Mozgova N.N., Tsepin A.I. (1983) [Fahlores (chemical composition and properties)]. Moscow, Nauka, 280 p. (in Russian)
  20. Palenova E.E., Blinov I.A., Zabotina M.V. (2015) [Silver minerals from quartz veins of the Krasnoe deposit (Bodaybo ore region)]. Mineralogiya [Mineralogy], (2), 9–17. (in Russian)
  21. Pattrick R.A.D. (1978) Microprobe analysis of cadmium-rich tetrahedrites from Tyndrum, Perthshire, Scotland. Mineralogical Magazine, 42, 286–288.
  22. Plotinskaya O.Y., Azovskova O.B., Abramov S.S., Groznova E.O., Novoselov K.A., Seltmann R., Spratt J. (2018) Precious metals assemblages at the Mikheevskoe porphyry copper deposit (South Urals, Russia) as proxies of epithermal overprinting. Ore Geology Reviews, 94, 239–260.
  23. Plotinskaya O.Y., Chugaev A.V. (2019) [Lead isotope characteristics of porphyry deposots of the South Urals as proxies of mantle-crustal interactions]. Metallogeniya drevnih i sovremennyh okeanov–2019. CHetvert’ veka dostizhenij v izuchenii submarinnyh mestorozhdenij [Metallogeny of ancient and modern oceans–2019. Twenty five years of advances in study of submarine deposits. Miass: OOO Fort-Dialog-Iset], 110−114. (in Russian)
  24. Plotinskaya O.Y., Grabezhev A.I., Groznova E.O., Seltmann R., Lehmann B. (2014) The Late Paleozoic porphyry-epithermal spectrum of the Birgilda–Tomino ore cluster in the South Urals, Russia. Journal of Asian Earth Sciences, 79B, 910−931.
  25. Plotinskaya O.Y., Grabezhev A.I., Seltmann R. (2015) Fahlores compositional zoning in a porphyry-epithermal system: Biksizak occurrence, South Urals, Russia as an example. Geology of Ore Deposits, 57(1), 42–63.
  26. Puchkov V.N. (2017) General features relating to the occurrence of mineral deposits in the Urals: What, where, when and why. Ore Geology Reviews, 85, 4–29.
  27. Puzhakov B.A. (1999) [Productive granitoids, metasomatism, and mineralization of the Birgil’da–Tomino ore cluster]. Dissertation of Candidate of Geological-Mineralogical Sciences. Yekaterinburg, IGG UrO RAN, 116 p. (in Russian)
  28. Repstock A., Voudouris P., Zeug M., Melfos V., Zhai M., Li H., Kartal T., Matuszczak J. (2016) Chemical composition and varieties of fahlore-group minerals from Oligocene mineralization in the Rhodope area, Southern Bulgaria and Northern Greece. Mineralogy and Petrology, 110(1), 103–123.
  29. [Russian copper company]. http://rmk-group.ru/en/activities/enterprises/mikheevsky/ (last addressed 06/06/2022) (in Russian)
  30. Sack R.O., Lynch J.V.G., Foit Jr. F. (2003) Fahlore as a petrogenetic indicator: Keno Hill Ag-Pb-Zn District, Yukon, Canada. Mineralogical Magazine, 67(5), 1023–1038.
  31. Sakharova M.S. (1966) [Correlation between composition of fahlores and mineral forming conditions] In: Ocherki geokhimii endogennykh i gipergennykh protsessov [Essays of Geochemistry of Endogenic and Supergene Processes]. Moscow, Nauka, 109–118. (in Russian)
  32. Staude S., Mordhorst T., Neumann R., Prebeck W., Markl G. (2010) Compositional variation of the tennantite−tetrahedrite solid solution series in the Schwarzwald ore district (SW Germany): the role of mineralization processes and fluid source. Mineralogical Magazine, 74(2) 309–339.
  33. Shargorodsky B.M., Novikov I.M., Aksenov S.A. (2005) [The Mikheevskoe copper porphyry deposit in the South Urals]. Otechestvennaya Geologia [National Geology], (2), 57–61 (in Russian).
  34. Singer D.A., Berger V.I., Moring B.C. (2008) Porphyry copper deposits of the world: database and grade and tonnage models. Open-File Report 2008-1155.
  35. Smirnov V.N., Ivanov K.S., Shokalsky S.P., Ron-kin Yu.L. (2017) [The results of U-Pb SHRIMP-II dating of zircon from granitoids of Talitsky molybdenum-bearing massif (eastern slope of the Middle Urals)]. Lithosphere [Litosfera], 17(3), 145–150. (in Russian)
  36. Spiridonov E.M., Petrov V.K., Voropaev A.V. (1988) [The influence of Cd on optical properties of fahlores]. Doklady Akademii Nauk SSSR [Doklady Academy of Sciences of the USSR], 303(2), 463−466. (in Russian)
  37. Tessalina S.G., Plotinskaya O.Y. (2017) Silurian to Carboniferous Re-Os molybdenite ages of the Kalinovskoe, Mikheevskoe and Talitsa Cu-Mo porphyry deposits in the Urals: implications for geodynamic setting. Ore Geology Reviews, 85, 174–180.
  38. [Tominsky processing plant] http://tomgok.ru (last addressed 14/01/2020)
  39. Vassileva R.D., Atanassova R., Kouzmanov K. (2014) Tennantite-tetrahedrite series from the Madan Pb-Zn deposits, Central Rhodopes, Bulgaria. Mineralogy and Petrology, 108(4), 515–531.
  40. Voropaev A.V., Spiridonov E.M., Shchibrik V.I. (1988) [Tetrahedrite-Cd – the first finding in the USSR]. Doklady Akademii Nauk SSSR [Doklady Academy of Sciences of the USSR], 300(6), 1446−1448. (in Russian)
  41. Voudouris P.C., Spry P.G., Sakellaris G.A., Mavrogonatos C. (2011) A cervelleite-like mineral and other Ag-Cu-Te-S minerals [Ag2CuTeS and (Ag,Cu)2TeS] in gold-bearing veins in metamorphic rocks of the Cycladic Blueschist Unit, Kallianou, Evia Island, Greece. Mineralogy and Petrology, 101, 169–183.

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».