Autoimport of a Large Volume Information into a Database Using the Python Programming Language
- Autores: Krapivin R.R.1, Gareeva G.A.1, Filatov Y.M.1, Faizullina A.G.2, Myshkina I.Y.2
-
Afiliações:
- Kazan National Research Technical University named after A.N. Tupolev-KAI
- Kazan Federal University Naberezhnochelninsk Institute
- Edição: Volume 13, Nº 2 (2023)
- Páginas: 33-46
- Seção: Articles
- ##submission.datePublished##: 30.06.2023
- URL: https://journal-vniispk.ru/2328-1391/article/view/347183
- DOI: https://doi.org/10.12731/2227-930X-2023-13-2-33-46
- EDN: https://elibrary.ru/MIOWKT
- ID: 347183
Citar
Texto integral
Resumo
The article discusses an efficient and automated way to import large amounts of data from Excel tables into a database. In various projects, there are tasks in which the flow of huge data, such as logs of program operations or manual operations performed at work sites, is vital for effective analysis.
Purpose – development of a module for automatic import of a large amount of data from Excel format into a database.
Method or methodology of work: the article discusses a method that implements automatic import of data from Excel tables into a Postgresql database.
Result: developed its own unique module that is able to process huge Excel tables and import them into a Postgresql database without manual operations.
Scope of the results: the data obtained, which are stored in the database, should be used to identify high-yield accounts for subsequent investment.
Palavras-chave
Sobre autores
Roman Krapivin
Kazan National Research Technical University named after A.N. Tupolev-KAI
Autor responsável pela correspondência
Email: Jerichotyrant1@yandex.ru
student
Rússia, 1, Akademika Koroleva Str., Naberezhnye Chelny, 423814, Russian Federation
Gulnara Gareeva
Kazan National Research Technical University named after A.N. Tupolev-KAI
Email: gagareeva1977@mail.ru
Código SPIN: 3279-8465
Scopus Author ID: 36801593200
Researcher ID: M-1728-2015
Head of the Department of Information Systems, Candidate of Pedagogical Sciences, Associate Professor
Rússia, 1, Akademika Koroleva Str., Naberezhnye Chelny, 423814, Russian Federation
Yuri Filatov
Kazan National Research Technical University named after A.N. Tupolev-KAI
Email: Uraura111222@gmail.com
student
Rússia, 1, Akademika Koroleva Str., Naberezhnye Chelny, 423814, Russian Federation
Aigul Faizullina
Kazan Federal University Naberezhnochelninsk Institute
Email: dlya_pisem_t@mail.ru
Lecturer, College of Engineering and Economics
Rússia, 68/19, Prospekt Mira, Naberezhnye Chelny 423812, Russian Federation
Irina Myshkina
Kazan Federal University Naberezhnochelninsk Institute
Email: mirinau@mail.ru
Associate Professor, Department of System Analysis and Informatics
Rússia, 68/19, Prospekt Mira, Naberezhnye Chelny 423812, Russian Federation
Bibliografia
- Loginova E.V. Necessity of studying information flows of an enterprise / E.V. Loginova, T.A. Sarieva // Problems of Modern Science and Education, 2017. - № 2. - pp. 45-48.
- Methods and models of research of complex systems and big data processing: Monograph / I.Y. Paramonov, V.A. Smagin, N.E. Kosykh, A.D. Khomonenko; edited by V. A. Smagin and A. D. Khomonenko. - St. Petersburg: Lan’, 2020. - 236 p.
- Bengforth, B. Applied textual data analysis in Python. Machine learning and creating natural language processing applications / B. Bengforth. - St. Petersburg: Peter, 2019. - 368 p.
- Ponomareva L.A., Chiskidov S.V., Ronzhina I.A., Golosov P.E. Designing computer learning systems: Monograph. Ministry of Education and Science of the Russian Federation, Russian Academy of National Economy and Public Administration, Moscow State Pedagogical University. Tambov: Consulting company Yukom, 2018. 120 p.
- Prokofieva E.N. Assessment of the quality of information flow management in organizations / E.N. Prokof’eva, A.V. Vostrikova // Vestnik RMAT, 2017. - 330 p.
- Prohorenok N.A. Python 3 and PyQt. Development of applications. - St. Petersburg: BHV-Peterburg, 2012. - 704 p.
- Samoylova I. A. Technologies of big data processing / Young scientist. - 2017. - № 49 (183). - pp. 26-28.
- Models and methods of research of information systems: monograph / A.D. Khomonenko, A.G. Basyrov, V.P. Bubnov [et al]. - Saint Petersburg: Lan’, 2019. - 204 p.
- Kanaev K.A., Faleeva E.V., Ponomarchuk Y.V. Comparative analysis of data exchange formats used in applications with client-server architecture // Fundamental Research. - 2015. - № 2-25. - pp. 5569-5572.
- Zlatopolsky D.M. Fundamentals of programming in the Python language. - Moscow: DMK Press, 2017. - 284 p.
- Vinogradova E. Yu. Intelligent information technology - theory and methodology of building information systems: monograph / Ministry of Education and Science of the Russian Federation, Ural State. Economics University. - Ekaterinburg: Publishing house of the Ural State University of Economics, 2011. - 263 p.
- Belkova A.L. Mastering the work with relational databases in MS Excel 2013 / A.L. Belkova, S.N. Leora // Theory and practice of education in the modern world: proceedings of the VI International. scientific. conf. - St. Petersburg: Zanevskaya Square, 2014. - pp. 349-356.
- Worsley, J. PostgreSQL. For professionals / J. Worsley, J. Drake. - M.: SPb: Peter, 2002. - 496 p.
- Hans-Jürgen Schönig Mastering PostgreSQL 13 - Fourth Edition: Build, administer, and maintain database applications efficiently with PostgreSQL 13. - Packt Publishing, – 2020. - 476 p.
- Baji Shaik, Avinash Vallarapu Beginning PostgreSQL on the Cloud: Simplifying Database as a Service on Cloud Platforms. – Apress, - 2018. - 381 p.
Arquivos suplementares



