Conceptualization of memory within the framework of cognitive systems theory

Cover Page

Cite item

Full Text

Abstract

The subject of this research is the formation of generalized concepts of memory systems. Memory systems are analyzed in the context of various representations: within and beyond the informational model of consciousness; within management systems of objects with varying degrees of stability, including real-time systems; as an element of the actor model of cognitive systems. Significant attention is paid to analyzing existing and prospective representations of the cognitive model of memory, which includes principles of learning, memory retention, memory updating, forgetting, and the mechanism of multi-system integration of knowledge in memory, which provides cognitive intellectual systems with the ability to comprehend knowledge through its integration into a complex of existing representations, as well as facilitating creative intellectual activities—creativity. The research methodology is based on considering memory within the framework of various representations formed in system theory, algorithm theory, and cognitive system theory. The foundation of the comprehensive analysis of memory is the definition of memory within the informational concept of consciousness, supplemented by a definition of the non-informational components of memory. The research presented in the article revealed the inseparable connection between a system's memory and its changes over time. The adequacy of the representation of cognitive systems, including memory subsystems, within the framework of the actor model was established. Cognitive models of memory were defined, the practical realization of which is manifested in learning methodologies, including transfer learning, which serves as a precursor to the mechanism of multi-system integration of knowledge that underlies knowledge comprehension and creativity. An authorial interpretation of the complexity of cognitive systems and their memory subsystems was proposed, which includes temporal, spatial, and configurational complexities, and the possibilities for increasing memory efficiency by reducing its complexity while maintaining functionality were discussed. Priority mechanisms for enhancing the effectiveness of memory management processes were identified. The scientific novelty of the research lies in forming a holistic understanding of the formation, content, functioning, and interconnections of memory subsystems within cognitive systems, based on which directions for their further development and improvement can be determined. As a result of the research, it was established that memory is a key component of cognitive systems, determining the stability and continuity of their changes over time, as well as setting fundamental limits on the expansion of knowledge that cognitive systems can operate with.

References

  1. Грибков А.А., Зеленский А.А. Определение сознания, самосознания и субъектности в рамках информационной концепции // Философия и культура. 2023. № 12. С. 1-14. doi: 10.7256/2454-0757.2023.12.69095 EDN: VZRLGO URL: https://nbpublish.com/library_read_article.php?id=69095
  2. Sayre K.M. Cybernetics and the Philosophy of Mind. Routledge and Kegan Paul, 1976. 265 p.
  3. Дубровский Д.И. Проблема "Сознание и мозг": теоретическое решение. М.: "Канон+" РООИ "Реабилитация", 2015. 208 с.
  4. Прыгин Г.С. Феномен сознания: является ли информационная концепция сознания прорывом в его понимании // Вестник Удмуртского университета. Серия философия. Психология. Педагогика. 2017. Т. 27. Вып. 4. С. 456-463. EDN: YMOXEP
  5. Грибков А.А., Зеленский А.А. Общая теория систем и креативный искусственный интеллект // Философия и культура. 2023. № 11. С. 32-44. doi: 10.7256/2454-0757.2023.11.68986 EDN: EQVTJY URL: https://nbpublish.com/library_read_article.php?id=68986
  6. Gros С. Complex and Adaptive Dynamical Systems. A Primer. Third Edition. Springer-Verlag Berlin Heidelberg, 2013. 356 p. https://doi.org/10.1007/978-3-642-36586-7. EDN: WTRAER
  7. Нуркова В.В. Память / Общая психология. В 7 т.: учебник для студентов высш. учеб. заведений / под ред. Б.С. Братуся. Т. 3. М.: Издательский центр "Академия", 2006. 320 с.
  8. Ноздрачев А.Д. Физиология вегетативной нервной системы. Л.: Медицина, 1983. 296 с.
  9. Селедцов В.И., Литвинова Л.С., Гончаров А.Г., Шуплецова В.В., Селедцов Д.В., Гуцол А.А., Селедцова И.А. Клеточные механизмы генерации иммунологической памяти // Цитокины и воспаление. 2010. Т. 9. № 4. С. 9-15. EDN: OFYYIT
  10. Циркин В.И., Трухина С.И., Трухин А.Н. Нейрофизиология: Физиология памяти: учебник для вузов. М.: Издательство Юрайт, 2021. 407 с.
  11. Palacios S., Bruno S., Weiss R., Salibi E., Goodchild-Michelman I., Kane A., Ilia K., Del Vecchio D. Analog epigenetic memory revealed by targeted chromatin editing // Cell Genomics. 2025. Vol. 5. 100985. https://doi.org/10.1016/j.xgen.2025.100985
  12. Зеленский А.А., Грибков А.А. Онтологические аспекты проблемы реализуемости управления сложными системами // Философская мысль. 2023. № 12. С. 21-31. doi: 10.25136/2409-8728.2023.12.68807 EDN: VIVNFQ URL: https://nbpublish.com/library_read_article.php?id=68807
  13. Попов В.Л. Наномашины: общий подход к индуцированию направленного движения на атомном уровне // Журнал технической физики. 2002. Т. 72. Вып. 11. С. 52-63. EDN: RYQVVZ
  14. Зеленский А.А., Илюхин И.В., Грибков А.А. Память-центрические модели систем управления движением промышленных роботов // Вестник Московского авиационного института. 2021. Т. 28. № 4. С. 245-256. https://doi.org/10.34759/vst-2021-4-245-256. EDN: AJRVJD
  15. Liu X., Zhou Y., Weigend F., Sonawani S., Shuhei Ikemoto S., Amor H.B. Diff-Control: A Stateful Diffusion-based Policy for Imitation Learning // 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/IROS58592.2024.10801557.
  16. Zhang B., Luo C., Yu D., Li X., Lin H., Ye Y., Zhang B. MetaDiff: Meta-Learning with Conditional Diffusion for Few-Shot Learning // Proceedings of the AAAI Conference on Artificial Intelligence. 2024. Vol. 38. P. 16687-16695. https://doi.org/10.1609/aaai.v38i15.29608. EDN: HMWOVV
  17. Keysers C., Gazzola V. Hebbian learning and predictive mirror neurons for actions, sensations and emotions // Philosophical Transactions of the Royal Society B: Biological Sciences. 2014. Vol. 369. Issue 1644. 20130175. https://doi.org/10.1098/rstb.2013.0175
  18. Lu S., Sengupta A. Deep unsupervised learning using spike-timing-dependent plasticity // Neuromorphic Computing and Engineering. 2024. Vol. 4. Num. 2. 024004. https://doi.org/10.1088/2634-4386/ad3a95. EDN: GADNCC
  19. Mohamed A., Lee H., Borgholt L., Havtorn J.D., Edin J., Igel C. Self-Supervised Speech Representation Learning: A Review // IEEE Journal of Selected Topics in Signal Processing. 2022. Vol. 16. Issue 6. P. 1179-1210. https://doi.org/10.1109/JSTSP.2022.3207050. EDN: XOXOKN
  20. Hosna A., Merry E., Gyalmo J., Alom X., Aung Z., Azim M.A. Transfer learning: a friendly introduction // Journal of Big Data. 2022. Vol. 9. 102. https://doi.org/10.1186/s40537-022-00652-w. EDN: AIMXEG
  21. Зеленский А.А., Грибков А.А. Вычислительная сложность в реальном времени // Моделирование, оптимизация и информационные технологии. 2025. Т. 13. № 3. https://doi.org/10.26102/2310-6018/2025.50.3.038. EDN: HTXURG
  22. Грибков А.А. Паллиативные системы с имитационной активностью: факторы устойчивости и сценарии управления // Философская мысль. 2025. № 4. С. 69-84. doi: 10.25136/2409-8728.2025.4.74090 EDN: KQUNND URL: https://nbpublish.com/library_read_article.php?id=74090
  23. Невельский П.Б., Фланчик В.Л. Избыточность и пропускная способность памяти // Проблемы бионики: республиканский межведомственный научно-технический сборник. 1970. № 2. С. 33-35.
  24. Караванов А.А., Устинов И.Ю. Психофизиология и достоверность добросовестных свидетельских показаний // Территория науки. 2014. № 2. С. 170-176. EDN: TJDTHR
  25. Осипов В.Ю. Пределы памяти рекуррентных нейронных сетей со стиранием устаревшей информации // Научный вестник НГТУ. 2014. Т. 56. № 3. С. 115-122. EDN: SNYWBL

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».