Poly(l-lactide-со-glycolide) and shellac in the development of phase-sensitive in situ implants

Cover Page

Cite item

Full Text

Abstract

Aim – to consider the potential prospects of using Poly(l-lactide-co-glycolide) (PLGA) and shellac to obtain phase-dependent in situ implants.

Material and methods. The study required two stages: stage I was the evaluation of NMP-polymer compositions, and stage II was the evaluation of NMP-polymer-PEG compositions. We used PLGA with various ratios of lactide and glycolide units (75:25, 50:50), dewaxed bleached shellac, N-methylpyrrolidone (NMP) as a solvent, and PEG-1500 at a concentration of 5% (wt/vol) as a co-solvent. The experimental formulations contained matrix formers at a concentration of 33%. The formulations were screened for polymer solubility in NMP, homogeneity and permeability through the needle of the resulting polymer-NMP system, the implant formation rate during the liquid-liquid extraction in a phosphate buffer solution (pH=6.8), and the implant morphology. The rate of implant formation and the diffusion of the dye from the delivery systems were also studied using the in vitro agar gingiva model, previously developed in the laboratory of the A.P. Nelyubin Institute of Pharmacy.

Results. The first stage of the study showed that the NMP-PLGA system (75:25) formed a solid implant in 1 hour, and the NMP-shellac system – in 2 hours. The formulations were positively assessed according to the presented criteria, despite the very different diffusion volumes – 1414 µl for NMP-shellac and 1065 µl for NMP-PLGA (75:25) – which indicates the possibility of their use without the introduction of additional excipients. The NMP-PLGA system (50:50) had not completely precipitated after the critical time (3 hours) and was considered as requiring an adjustment due to the insufficient implant formation rate.

In the stage II, a less intense diffusion of the dye from the implants into agar was observed. For example, for NMP-PLGA(50:50) – 641 µl, and for NMP-PLGA(50:50)-PEG – 25 µl. At the same time, there was the positive dynamics in the time of their precipitation both in phosphate buffer medium (instantaneous precipitation without the need for shaking) and in the in vitro agar gingiva model – after 3 hours, the composition of NMP-PLGA (50:50)-PEG, in contrast to NMP-PLGA (50:50), had formed a semi-solid implant.

Conclusion. In the course of the experiments, the compositions of NMP-shellac and NMP-PLGA (75:25) were selected as the most promising for further development of a phase-sensitive in situ dental implant. The addition of PEG was found to be rational in terms of increasing the rate of implant precipitation and reducing the initial diffusion of the solvent.

About the authors

Polina S. Sakharova

Sechenov First Moscow State Medical University

Author for correspondence.
Email: sakharova_p_s@student.sechenov.ru
ORCID iD: 0000-0003-4870-6232

Student of Educational Department, Institute of Pharmacy named after A.P. Nelyubin

Russian Federation, Moscow

Victor S. Pyzhov

Sechenov First Moscow State Medical University

Email: pyzhov_v_s@student.sechenov.ru
ORCID iD: 0000-0003-2174-7157

Student of Educational Department, Institute of Pharmacy named after A.P. Nelyubin

Russian Federation, Moscow

Elena O. Bakhrushina

Sechenov First Moscow State Medical University

Email: bakhrushina_e_o@staff.sechenov.ru
ORCID iD: 0000-0001-8695-0346

PhD, Associate Professor, Department of Pharmaceutical Technology, Institute of Pharmacy named after A.P. Nelyubin

Russian Federation, Moscow

References

  1. Rein SMT, Lwin WW, Tuntarawongsa S, et al. Meloxicam-loaded solvent exchange-induced in situ forming beta-cyclodextrin gel and microparticle for periodontal pocket delivery. Materials Science and Engineering C. 2020;117:111275. doi: 10.1016/j.msec.2020.111275
  2. Li Z, Mu H, Weng Larsen S, Jensen H, et al. An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants. Int J Pharm. 2021;609:121183. doi: 10.1016/j.ijpharm.2021.121183
  3. Solorio L, Sundarapandiyan D, Olear A, et al. The Effect of Additives on the Behavior of Phase Sensitive in Situ Forming Implants. J Pharm Sci. 2015;104(10):3471-80. doi: 10.1002/jps.24558
  4. Al-Abd AM, Hong KY, Song SC, et al. Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. Journal of Controlled Release. 2010;142(1):101-7. doi: 10.1016/j.jconrel.2009.10.003
  5. Tang Y, Singh J. Controlled delivery of aspirin: Effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems. Int J Pharm. 2008;357(1-2):119-25. doi: 10.1016/j.ijpharm.2008.01.053
  6. Ravivarapu HB, Moyer KL, Dunn RL. Sustained activity and release of leuprolide acetate from an in situ forming polymeric implant. AAPS PharmSciTech. 2000;1(1):3014-3026. doi: 10.1007/bf02830516
  7. Lambert WJ, Peck KD. Development of an in situ forming biodegradable poly-lactide-coglycolide system for the controlled release of proteins. Journal of Controlled Release. 1995;33(1):283-292. doi: 10.1016/0168-3659(94)00083-7
  8. Eliaz RE, Kost J. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res. 2000;50(3):388-96. doi: 10.1002/(SICI)1097-4636(20000605)50:3<388::AID-JBM13> 3.0.CO;2-F
  9. McHugh AJ. The role of polymer membrane formation in sustained release drug delivery systems. Journal of Controlled Release. 2005;109:211-21. doi: 10.1016/j.jconrel.2005.09.038
  10. Dong WY, Körber M, López Esguerra V, et al. Stability of poly(d,l-lactide-co-glycolide) and leuprolide acetate in the in situ forming drug delivery systems. Journal of Controlled Release. 2006;115(2):158-67. doi: 10.1016/j.jconrel.2006.07.013
  11. Luan X, Bodmeier R. Influence of the poly(l-actide-co-glycolide) type on the leuprolide release from in situ forming microparticle systems. Journal of Controlled Release. 2006;110(2): 266-272. doi: 10.1016/j.jconrel.2005.10.005
  12. Graham PD, Brodbeck KJ, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery. Journal of Controlled Release. 1999;58(2):233-245. doi: 10.1016/S0168-3659(98)00158-8
  13. Brodbeck KJ, DesNoyer JR, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery: Part II. The role of solution thermodynamics and bath-side mass transfer. Journal of Controlled Release. 1999;62(3):333-344. doi: 10.1016/S0168-3659(99)00159-5
  14. Kang F, Singh J. In vitro release of insulin and biocompatibility of in situ forming gel systems. Int J Pharm. 2005;304(1-2):83-90. doi: 10.1016/j.ijpharm.2005.07.024
  15. Lu Y, Yu Y, Tang X. Sucrose acetate isobutyrate as an in situ forming system for sustained risperidone release. J Pharm Sci. 2007;96(12):3252-62. doi: 10.1002/jps.21091
  16. Okumu FW, Dao LN, Fielder PJ, et al. Sustained delivery of human growth hormone from a novel gel system: SABERTM. Biomaterials. 2002;23(22):4353-4358. doi: 10.1016/S0142-9612(02)00174-6
  17. Kranz H, Brazeau GA, Napaporn J, et al. Myotoxicity studies of injectable biodegradable in situ forming drug delivery systems. Int J Pharm. 2001;212(1):11-18. doi: 10.1016/S0378-5173(00)00568-8
  18. Rungseevijitprapa W, Brazeau GA, Simkins JW, et al. Myotoxicity studies of O/W-in situ forming microparticle systems. European Journal of Pharmaceutics and Biopharmaceutics. 2008;69(1):126-33. doi: 10.1016/j.ejpb.2007.10.009
  19. Kranz H, Bodmeier R. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Int J Pharm. 2007;332(1-2):107-14. doi: 10.1016/j.ijpharm.2006.09.033
  20. Schoenhammer K, Petersen H, Guethlein F, et al. Poly(ethyleneglycol) 500 dimethylether as novel solvent for injectable in situ forming depots. Pharm Res. 2009; 26(12):2568-77. doi: 10.1007/s11095-009-9969-0
  21. Liu H, Venkatraman SS. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems. J Pharm Sci. 2012;101(5):1783-1793. doi: 10.1002/jps.23065
  22. Kapoor DN, Katare OP, Dhawan S. In situ forming implant for controlled delivery of an anti-HIV fusion inhibitor. Int J Pharm. 2012;426(1-2):132-143. doi: 10.1016/j.ijpharm.2012.01.005
  23. Mashak A, Mobedi H, Ziaee F, et al. The effect of aliphatic esters on the formation and degradation behavior of PLGA-based in situ forming system. Polymer Bulletin. 2011;66(8):1063-1073. doi: 10.1007/s00289-010-0386-7
  24. Lin X, Yang S, Gou J, et al. A novel risperidone-loaded SAIB-PLGA mixture matrix depot with a reduced burst release: Effects of solvents and PLGA on drug release behaviors in vitro / in vivo. J Mater Sci Mater Med. 2012;23(2):443-55. doi: 10.1007/s10856-011-4521-2
  25. Wang L, Venkatraman S, Kleiner L. Drug release from injectable depots: Two different in vitro mechanisms. Journal of Controlled Release. 2004;99(2):207-16. doi: 10.1016/j.jconrel.2004.06.021
  26. Wang K, Jia Q, Yuan J, et al. A novel, simple method to simulate gelling process of injectable biodegradable in situ forming drug delivery system based on determination of electrical conductivity. Int J Pharm. 2011;404(1-2):176-9. doi: 10.1016/j.ijpharm.2010.10.042
  27. Kempe S, Metz H, Mäder K. Do in situ forming PLG/NMP implants behave similar in vitro and in vivo? A non-invasive and quantitative EPR investigation on the mechanisms of the implant formation process. Journal of Controlled Release. 2008;130(3):220-5. doi: 10.1016/j.jconrel.2008.06.006
  28. Schoenhammer K, Petersen H, Guethlein F, et al. Injectable in situ forming depot systems: PEG-DAE as novel solvent for improved PLGA storage stability. Int J Pharm. 2009;371(1-2):33-9. doi: 10.1016/j.ijpharm.2008.12.019
  29. Senarat S, Wai Lwin W, Mahadlek J, et al. Doxycycline hyclate-loaded in situ forming gels composed from bleached shellac, Ethocel, and Eudragit RS for periodontal pocket delivery. Saudi Pharmaceutical Journal. 2021;29(3):252-263. doi: 10.1016/j.jsps.2021.01.009
  30. Sakharova PS, Bakhrushina EO, Krasnyuk II. In vitro modeling for the evaluation of biopharmaceutical parameters of phase inversion-based dental in situ implants. Medical Pharm J Pulse. 2022;8:31-35. (In Russ). [Сахарова П.С., Бахрушина Е.О., Краснюк И.И. In vitro моделирование для оценки биофармацевтических показателей фазозависимых стоматологических in situ имплантатов. Медико-фармацевтический журнал «Пульс». 2022;8:31-35]. doi.org//10.26787/nydha-2686-6838-2022-24-8-31-35

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. The use of various solvents in the development of in situ implants.

Download (264KB)
3. Figure 2. Frequency of use of various polymers in drug delivery systems.

Download (144KB)
4. Figure 3. PLGA structure: m - the number of lactic acid fragments, n - the number of glycolic acid fragments.

Download (208KB)
5. Figure 4. Shellac structure.

Download (471KB)
6. Figure 5. Formed implants and cross sections of agar blocks after their removal. IA – NMP-shellac, IB – NMP-PLGA (75:25), IC – NMP-PLGA (50:50); IIA – NMP-shellac-PEG, IIB – NMP-PLGA (75:25)-PEG, IIC – NMP-PLGA (50:50)-PEG.

Download (866KB)

Copyright (c) 2022 Sakharova P.S., Pyzhov V.S., Bakhrushina E.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».