Association between forensic DNA and odontology in human identification during mass disaster: a systematic review

Cover Page

Cite item

Abstract

BACKGROUND: According to the literature, forensic odontology is one of the most effective and affordable scientific techniques for identifying victims of mass disasters. This research methodically reviews the role and function of forensic odontologists in several global mass disasters. Forensic DNA in odontology is associated with the importance of its application in the identification of humans of mass disasters. As the crime rate continues to rise, the field of forensic medicine has evolved significantly. Forensic dentists play a pivotal role in various areas of crime scene investigations, thereby helping solve innumerable mysteries.

AIM: The study aimed to increase the body of knowledge for future research on forensic odontology by conducting a systematic review search to investigate possible forensic DNA in odontology associated with the importance of its application in the identification of humans of mass disasters.

MATERIALS AND METHODS: Six databases, including Google Scholar, PubMed, Scopus, Embase, Web of Science, and ScienceDirect, were analyzed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) quality scale. The literature search, conducted until February 2024, informed important research choices.

RESULTS: A total of 16 (100%) studies related to forensic DNA of mass disasters were identified. Of these, only seven (43.75%) articles related to dental DNA were included in this review. Of the 4,808 articles obtained, 138 duplicates or irrelevant articles were eliminated. Following a full-text review, seven studies were selected based on eligibility criteria. The highest percentage of victims was identified using dental DNA. In a few studies, some samples were insufficient for complete DNA profiling due to factors such as the method of DNA extraction.

CONCLUSION: Forensic odontology has played a significant role in the identification of victims of several mass disasters around the world. Although teeth are an excellent source of DNA for humans, future studies with larger sample sizes, appropriate control groups, and standardized techniques of DNA extraction need to be conducted.

About the authors

R.M. Lopez Toribio

Hermilio Valdizán National University, Graduate School, Graduate School

Author for correspondence.
Email: miolopeztoribio@hotmail.com
ORCID iD: 0009-0001-3367-4920

MD, Master’s in forensic medicine

Peru, Huanuco

N.E. Castañeda Eugenio

Hermilio Valdizán National University, Graduate School, Graduate School

Email: ncastaneda@unheval.edu.pe
ORCID iD: 0000-0002-3016-663X

MD

Peru, Huanuco

D.A. Manrique de Lara Suarez

Hermilio Valdizán National University, Graduate School, Graduate School

Email: dmanrique@unheval.edu.pe
ORCID iD: 0000-0003-4488-252X

MD

Peru, Huanuco

References

  1. Nathan MD, Sakthi DS. Dentistry and mass disaster: A review. J Clin Diagn Res. 2014;8(7):ZE01-3. doi: 10.7860/JCDR/2014/7282.4573
  2. Harris HA, Lee HC. Introduction to forensic science and criminalistics. CRC Press; 2019. 446 р. doi: 10.4324/9781315119175
  3. Acharya AB. Role of forensic odontology in disaster victim identification in the Indian context. J Dent Specialities. 2015;3(1):1–3.
  4. Sakari SL, Jimson S, Masthan KM, Jacobina J. Role of DNA profiling in forensic odontology. J Pharm Bioallied Sci. 2015;7(Suppl 1)S138–141. doi: 10.4103/0975-7406.155863
  5. Manjunath BC, Chandrashekar BR, Mahesh M, Rani RM. DNA profiling and forensic dentistry: A review of the recent concepts and trends. J Forensic Leg Med. 2011;18(5):191–197. doi: 10.1016/j.jflm.2011.02.005
  6. Sweet D. Why a dentist for identification? Dent Clin North Am. 2001;45(2):237–251. doi: 10.1016/S0011-8532(22)01760-8
  7. Sujatha G, Priya VV, Dubey A, et al. Toothbrushes as a source of DNA for gender and human identification: A systematic review. Int J Environ Res Public Health. 2021;18(21):11182. doi: 10.3390/ijerph182111182
  8. Mayall SS, Agarwal P, Vashisth P. Dental DNA fingerprinting in identification of human remains. Ann Dent Spec. 2013;1(1):16–19.
  9. Sweet D. Forensic dental identification. Forensic Sci Int. 2010;201(1-3):3–4. doi: 10.1016/j.forsciint.2010.02.030
  10. Pittayapat P, Jacobs R, de Valck E, et al. Forensic odontology in the disaster victim identification process. J Forensic Odontostomatol. 2012;30(1):1–12.
  11. Waleed P, Baba F, Alsulami S, Tarakji B. Importance of dental records in forensic dental identification. Acta Inform Med. 2015;23(1):49–52. doi: 10.5455/aim.2015.23.49-52
  12. Jobim MR, Gamio F, Ewald G, et al. Human identification using DNA purified from residues in used toothbrushes. Int Congr Ser. 2004;1261:491–493. doi: 10.1016/j.ics.2003.11.013
  13. Jeffreys AJ, Wilson V, Thein SL. Individual-specific “fingerprints” of human DNA. Nature. 1985;316(6023):76–79. doi: 10.1038/316076a0
  14. Maffeo C, Yoo J, Comer J, et al. Close encounters with DNA. J Phys Condens Matter. 2014;26(41):413101. doi: 10.1088/0953-8984/26/41/413101
  15. Mansueto G, Benincasa G, Della Mura N, et al. Epigenetic-sensitive liquid biomarkers and personalised therapy in advanced heart failure: A focus on cell-free DNA and microRNAs. J Clin Pathol. 2020;73(9):535–543. doi: 10.1136/jclinpath-2019-206404
  16. Van Oorschot RA, Ballantyne KN, Mitchell RJ. Forensic trace DNA: A review. Investig Genet. 2010;1(1):14. doi: 10.1186/2041-2223-1-14
  17. Butler JM. The future of forensic DNA analysis. Philos Trans R Soc Lond B Biol Sci. 2015;370(1674):20140252. doi: 10.1098/rstb.2014.0252
  18. Buckleton J, Triggs C, Clayton T. In: Buckleton J, Triggs CM, Walsh SJ, ed. Disaster victim identification, identification of missing persons, and immigration cases in forensic DNA evidence interpretation. CRC Press Washington, D.C.; 2005. P. 406–408. doi: 10.1201/9781420037920.ch11
  19. Luntz LL. History of forensic dentistry. Dent Clin North Am. 1977;21:7–17. doi: 10.1016/S0011-8532(22)00887-4
  20. Neville BW, Douglas D, Allen CM, Bouquot J. Forensic dentistry In: Neville BW, editor. Oral & maxillofacial pathology. Philadelphia (PA): W.B. Saunders; 2002. P. 763–783.
  21. Cumpston MS, McKenzie JE, Welch VA, Brennan SE. Strengthening systematic reviews in public health: Guidance in the Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed. J Public Health (Oxf). 2022;44(4):e588–e592. doi: 10.1093/pubmed/fdac036
  22. Page MJ, McKenzie JE, Bossuyt PM, et al. The prisma 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71
  23. Bastiaan RJ. Dental identification of the Victorian bushfire victims. Aust Dent J. 1984;29(2):105–110. doi: 10.1111/j.1834-7819.1984.tb06044.x
  24. Hsu CM, Huang NE, Tsai LC, et al. Identification of victims of the 1998 Taoyuan Airbus crash accident using DNA analysis. Int J Legal Med. 1999;113(1):43–46. doi: 10.1007/s004140050277
  25. Nambiar P, Jalil N, Singh B. The dental identification of victims of an aircraft accident in Malaysia. Int Dent J. 1997;47(1):9–15. doi: 10.1111/j.1875-595x.1997.tb00671.x
  26. Bux R, Heidemann D, Enders M, Bratzke H. The value of examination aids in victim identification: A retrospective study of an airplane crash in Nepal in 2002. Forensic Sci Int. 2006;164(2-3):155–158. doi: 10.1016/j.forsciint.2005.12.025
  27. Schuller-Götzburg P, Suchanek J. Forensic odontologists successfully identify tsunami victims in Phuket, Thailand. Forensic Sci Int. 2007;171(2-3):204–207. doi: 10.1016/j.forsciint.2006.08.013
  28. Tan PH, Wee KP, Sahelangi P. Remembering the Musi: SilkAir Flight MI 185 crash victim identification. Ann Acad Med Singapore. 2007;36(10):861–866. doi: 10.47102/annals-acadmedsg.V36N10p861
  29. Prieto JL, Tortosa C, Bedate A, et al. The 11 March 2004 Madrid terrorist attacks: The importance of the mortuary organisation for identification of victims. A critical review. Int J Legal Med. 2007;121(6):517–522. doi: 10.1007/s00414-007-0196-0
  30. Hinchliffe J. Forensic odontology. Part 3. The Australian bushfires: Victoria state, February 2009. Br Dent J. 2011;210(7):317–321. doi: 10.1038/sj.bdj.2011.239
  31. Trengrove H. Operation earthquake 2011: Christchurch earthquake disaster victim identification. J Forensic Odontostomatol. 2011;29(2):1–7.
  32. Bush M, Miller R. The crash of colgan air flight 3407: Advanced techniques in victim identification. J Am Dent Assoc. 2011;142(12):1352–1356. doi: 10.14219/jada.archive.2011.0135
  33. Manhart J, Bittorf A, Buttner A. Disaster victim identification-experiences of the «Autobahn A19» disaster. Forensic Sci Med Pathol. 2012;8(2):118–124. doi: 10.1007/s12024-011-9307-9
  34. Barbería E, Martin-Fumadó C, Galtés I, et al. Managing the identification of the mortal victims run over by a train in the Castelldefels railway accident (Barcelona). Leg Med (Tokyo). 2015;17(5):366–370. doi: 10.1016/j.legalmed.2015.05.002
  35. Obafunwa JO, Ogunbanjo VO, Ogunbanjo OB, et al. Forensic odontological observations in the victims of DANA air crash. Pan Afr Med J. 2015;20:96. doi: 10.11604/pamj.2015.20.96.5360
  36. Iino M, Aoki Y. The use of radiology in the Japanese tsunami DVI process. Forens Radiol Imaging. 2016;4:20–26. doi: 10.1016/j.jofri.2015.12.006
  37. De Boer HH, Maat GJ, Kadarmo DA, et al. DNA identification of human remains in Disaster Victim Identification (DVI): An efficient sampling method for muscle, bone, bone marrow and teeth. Forensic Sci Int. 2018;289:253–259. doi: 10.1016/j.forsciint.2018.05.044
  38. Marrone M, Tarantino F, Stellacci A, et al. Forensic analysis and identification processes in mass disasters: Explosion of gun powder in the fireworks factory. Molecules. 2021;27(1):244. doi: 10.3390/molecules27010244
  39. Dahal S, Chaudhary GK, Maharjan MR, Walung ED. A dental perspective on the successes and limitations of the disaster victim identification response to the Nepal earthquake. Forensic Sci Res. 2022;7(3):366–370. doi: 10.1080/20961790.2022.2034716
  40. Butler JM. Forensic DNA typing biology, technology, and genetics of STR markers. 2 nd ed. London: Elsevier Academic Press; 2005. 688 р.
  41. Lee HC, Ladd C, Bourke MT, et al. DNA typing in forensic science. I. Theory and background. Am J Forensic Med Pathol. 1994;15(4):269e82. doi: 10.1097/00000433-199412000-00001
  42. Odah M. The double helix of justice: The crucial role of DNA in advancing criminal investigations. Preprints. 2024. doi: 10.20944/preprints202403.0450.v1
  43. Bettens T, Redlich AD. The effects of confessions on misconduct and guilty pleas in exonerations: Implications for discovery policies. Criminol Public Policy. 2024;23(1):179–199. doi: 10.1111/1745-9133.12643
  44. Sahu MK, Jha H. DNA technology: A potential tool in forensic science-a review. J Exp Zoology India. 2024;27(1):47 doi: 10.51470/JEZ.2024.27.1.47
  45. Watson JL, McNevin D, Ward J. Genetic kinship testing techniques for human remains identification and missing persons investigations. Forensic Genom. 2024;4(1):4–23. doi: 10.1089/forensic.2023.0018
  46. Worrapitirungsi W, Sathirapatya T, Sukawutthiya P, et al. Assessing the feasibility of free DNA for disaster victim identification and forensic applications. Sci Rep. 2024;14(1):5411. doi: 10.1038/s41598-024-53040-0
  47. Greytak E, Wyatt S, Cady J, et al. Investigative genetic genealogy for human remains identification. J Forensic Sci. 2024:69(5):1531–1545. doi: 10.1111/1556-4029.15469
  48. Dash HR, Yadav T, Arora M. Advancements in forensic DNA analysis in generating investigation leads and elimination of innocents. Forensic Justice. 2024. Р. 294–311. doi: 10.4324/9781032629346-20
  49. Barcenilla C, Cobo-Díaz JF, De Filippis F, et al. Improved sampling and DNA extraction procedures for microbiome analysis in food-processing environments. Nat Protoc. 2024;19(5):1291–1310. doi: 10.1038/s41596-023-00949-x
  50. Shahzad M, De Maeyer H, Salih GA, et al. Evaluation of storage conditions and the effect on DNA from forensic evidence objects retrieved from lake water. Genes. 2024;15(3):279. doi: 10.3390/genes15030279
  51. Simon C, Franke A, Martin A. The polymerase chain reaction: DNA extraction and amplification. Molecular Techniques Taxonomy. 1991;57:329–355. doi: 10.1007/978-3-642-83962-7_22
  52. Bukyya JL, Tejasvi ML, Avinash A, et al. DNA profiling in forensic science: A review. Glob Med Genet. 2021;8(04):135–143. doi: 10.1055/s-0041-1728689
  53. Bright JA, Taylor D, Gittelson S, Buckleton J. The paradigm shift in DNA profile interpretation. Forensic Sci Int Genet. 2017;31:e24–e32. doi: 10.1016/j.fsigen.2017.08.005
  54. Bechky BA. Evaluative spillovers from technological change: The effects of “DNA envy” on occupational practices in forensic science. Adm Sci Q. 2020;65(3):606–643. doi: 10.1177/0001839219855329
  55. Roewer L. DNA fingerprinting in forensics: Past, present, future. Investig Genet. 2023;4(1):22. doi: 10.1186/2041-2223-4-22
  56. Jawad EF, Mahdi WT, Yaseen HS. Principles of genetic fingerprinting in forensic medicine. JUBPAS. 2023;31(1):182–191. doi: 10.29196/jubpas.v31i1.4569
  57. Smith JH, Singh M. Forensic DNA profiling: Legal and ethical considerations. J Sci Res Rep. 2024;30(5):141–144. doi: 10.9734/jsrr/2024/v30i51929
  58. Tiwari P. Legal and ethical considerations in the use of DNA fingerprinting. J Sci Res Rep. 2024;30(3):236–242. doi: 10.9734/jsrr/2024/v30i31875
  59. McCord BR, Gauthier Q, Cho S, et al. Forensic DNA analysis. Anal Chem. 2019;91(1):673–688. doi: 10.1021/acs.analchem.8b05318
  60. Makałowski W. The human genome structure and organization. Acta Biochim Pol. 2001;48(3):587–598. doi: 10.18388/abp.2001_3893
  61. Fukuda M, Wakasugi S, Tsuzuki T, et al. Mitochondrial DNA-like sequences in the human nuclear genome: Characterization and implications in the evolution of mitochondrial DNA. J Mol Biol. 1985;186(2):257–266. doi: 10.1016/0022-2836(85)90102-0
  62. Collins FS, McKusick VA. Implications of the human genome project for medical science. JAMA. 2001;285(5):540–544. doi: 10.1001/jama.285.5.540
  63. Nakamura Y, Leppert M, O’Connell P, et al. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987;235(4796):1616–1622. doi: 10.1126/science.3029872
  64. Nakamura Y, Koyama K, Matsushima M. VNTR (variable number of tandem repeat) sequences as transcriptional, translational, or functional regulators. J Hum Genet. 1998;43(3):149–152. doi: 10.1007/s100380050059
  65. Bakhtiari M, Shleizer-Burko S, Gymrek M, et al. Targeted genotyping of variable number tandem repeats with adVNTR. Genome Res. 2018;28(11):1709–1719. doi: 10.1101/gr.235119.118
  66. Chakraborty R, Fornage M, Gueguen R, Boerwinkle E. Population genetics of hypervariable loci: Analysis of PCR based VNTR polymorphism within a population. EXS. 1991;58:127–143. doi: 10.1007/978-3-0348-7312-3_10
  67. Harding RM. VNTRs in review. Evolutionary anthropology: Issues, news, and reviews. 1992;1(2):62–71. doi: 10.1002/evan.1360010208
  68. Narayanan S. Applications of restriction fragment length polymorphism. Ann Clin Lab Sci. 1991;21(4):291–296.
  69. Rahiman S, Nissankararao P. Restriction fragment length polymorphism (RFLP) application in DNA typing for Crime investigation. Indian J Forensic Med Toxicol. 2010;4(1):79-82.
  70. Budowle B, Adams DE, Allen RC. Fragment-length polymorphisms for forensic science applications. Methods Nucleic Acids Research. 1991;181:182.
  71. Siebers M, Walla A, Rütjes T, et al. Application of DNA fingerprinting using the D1S80 locus in lab classes. J Vis Exp. 2021;173:e62305. doi: 10.3791/62305
  72. Vajpayee K, Sagar DC, Dash HR. Forensic DNA typing: Inception, methodology, and technical advancements. In: Forensic DNA typing: Principles, applications and advancements. 2020. Р. 3–26. doi: 10.1007/978-981-15-6655-4_1
  73. Kayser M, Sajantila A, Butler JM, et al. Special issue: Forensic genetics: Unde venisti et quo vadis? Forensic Sci Int Genet. 2023;65:102881. doi: 10.1016/j.fsigen.2023.102881
  74. Novroski NM, Cihlar JC. Evolution of single-nucleotide polymorphism use in forensic genetics. Wiley interdisciplinary reviews. Forensic Sci. 2022;4(6):e1459. doi: 10.1002/wfs2.1459
  75. Zhang W, Jin X, Wang Y, et al. Genetic polymorphisms and forensic efficiencies of a set of novel autosomal in del markers in a chinese mongolian group. Biomed Res Int. 2020; 2020:3925189. doi: 10.1155/2020/3925189
  76. De Knijff P. On the forensic use of Y-chromosome polymorphisms. Genes. 2022;13(5):898. doi: 10.3390/genes13050898
  77. Gang A, Shrivastav VK. Single-nucleotide polymorphism: A forensic perspective. Handbook of DNA Profiling; 2020. P. 1–22. doi: 10.1007/978-981-15-9364-2_8-1
  78. Sameer AS, Banday MZ, Nissar S. Mutations and polymorphisms: What is the difference? Genetic Polymorphism Cancer Susceptibility. 2021. P. 1–21. doi: 10.1007/978-981-33-6699-2_1
  79. Peng D, Zhang Y, Ren H, et al. Identification of sequence polymorphisms at 58 STRs and 94 iiSNPs in a Tibetan population using massively parallel sequencing. Sci Rep. 2020;10(1):12225. doi: 10.1038/s41598-020-69137-1
  80. Ji Y, Gong J, Sedlazeck FJ, Fan S. Characterizing the genetic polymorphisms in 370 challenging medically relevant genes using long-read sequencing data from 41 human individuals among 19 global populations. BioRxiv. 2022. doi: 10.1101/2022.08.03.502734
  81. Basu BR, Pal R, Samaddar A, Chackraborty S. Genetic polymorphism: Evolution with technological advances and future direction. Indian J Physiol Allied Sci. 2022;74(4):12–15. doi: 10.55184/ijpas.v74i04.35
  82. Tozzo P, Politi C, Delicati A, et al. External visible characteristics prediction through SNPs analysis in the forensic setting: A review. Front Biosci (Landmark Ed). 2021;26(10):828–850. doi: 10.52586/4991
  83. Purcell J, Lagunas-Robles G, Rabeling C, et al. The maintenance of polymorphism in an ancient social supergene. Mol Ecol. 2021;30(23):6246–6258. doi: 10.1111/mec.16196
  84. Loureiro LO, Engstrom MD, Lim BK. Single nucleotide polymorphisms (SNPs) provide unprecedented resolution of species boundaries, phylogenetic relationships, and genetic diversity in the mastiff bats (Molossus). Mol Phylogenet Evol. 2020;143:106690. doi: 10.1016/j.ympev.2019.106690
  85. Zhang Y, Lu W. Toll-like receptors gene polymorphisms in autoimmune disease. Front Immunol. 2021;12:672346. doi: 10.3389/fimmu.2021.672346
  86. Inuwa HM, Ezeonu IM, Adetunji CO, et al. Medical biotechnology, biopharmaceutics, forensic science and bioinformatics. CRC Press; 2022. 460 р. doi: 10.1201/9781003178903
  87. Ghatak S, Muthukumaran RB, Nachimuthu SK. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J Biomol Tech. 2013;24(4):224–231. doi: 10.7171/jbt.13-2404-001
  88. Bugawan TL, Saiki RK, Levenson CH, et al. The use of non-radioactive oligonucleotide probes to analyze enzymatically amplified DNA for prenatal diagnosis and forensic HLA typing. Nat Biotechnol. 1988;6(8):943–947. doi: 10.1038/nbt0888-943
  89. Gautam A. Polymerase chain reaction (PCR). In: DNA and RNA isolation techniques for non-experts. Cham: Springer International Publishing; 2022. P. 157–163. doi: 10.1007/978-3-030-94230-4_20
  90. Kaushik S, Sahajpal V. Capillary electrophoresis issues in forensic DNA typing. In: Forensic DNA typing: Principles, applications and advancements. 2020. P. 223–238. doi: 10.1007/978-981-15-6655-4_11
  91. Yuguda YM. Application of Next Generation Sequencing (NGS) technology in forensic science: A review. GSC Biol Pharm Sci. 2023,23(2):155–159. doi: 10.30574/gscbps.2023.23.2.0199
  92. Simoes Dutra Correa H, Brescia G, Cortellini V, et al. DNA quantitation and degradation assessment: A quantitative PCR protocol designed for small forensic genetics laboratories. Electrophoresis. 2020;41(9):714–719. doi: 10.1002/elps.201900360
  93. Francez PA, Penido DC, de Brito GD, et al. Comparison between automated DNA extraction employing the EZ1 platform and manual methods using real forensic samples. Rev Bras Crimin. 2021;10(1):44–56. doi: 10.15260/rbc.v10i1.476
  94. Turingan RS, Brown J, Kaplun L, et al. Identification of human remains using rapid DNA analysis. Int J Legal Med. 2020;134(3):863–872. doi: 10.1007/s00414-019-02186-y
  95. Amankwaa AO. Trends in forensic DNA database: Transnational exchange of DNA data. Forensic Sci Res. 2020;5(1):8–14. doi: 10.1080/20961790.2019.1565651
  96. Kesic B, McCann N, Bowerbank SL, et al. Forensic profiling of smokeless powders (SLPs) by gas chromatography-mass spectrometry (GC-MS): A systematic investigation into injector conditions and their effect on the characterisation of samples. Anal Bioanal Chem. 2024;416(8):1907–1922. doi: 10.1007/s00216-024-05189-w
  97. Abdel-Hay KM, Belal TS, Abiedalla Y, et al. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography-infrared (GC-IR) analyses of the chloro-1-n-pentyl-3-(1-naphthoyl)-indoles: Regioisomeric cannabinoids. Appl Spectrosc. 2019;73(4):433–443. doi: 10.1177/0003702818809998
  98. Graham EA. Lab-on-a-chip technology. Forensic Sci Med Pathol. 2005;1(3):221–223. doi: 10.1385/FSMP:1:3:221
  99. Medina-Sánchez M, Miserere S, Merkoçi A. Nanomaterials and lab-on-a-chip technologies. Lab Chip. 2012;12(11):1932–1943. doi: 10.1039/c2lc40063d
  100. Stanley UN, Khadija AM, Bukola AT, et al. Forensic DNA profiling: Autosomal short tandem repeat as a prominent marker in crime investigation. Malays J Med Sci. 2020;27(4):22. doi: 10.21315/mjms2020.27.4.3
  101. Keerti A, Ninave S. DNA fingerprinting: Use of autosomal short tandem repeats in forensic DNA typing. Cureus. 2022;14(10):e30210. doi: 10.7759/cureus.30210
  102. Novroski NM, Woerner AE, Budowle B. Potential highly polymorphic short tandem repeat markers for enhanced forensic identity testing. Forensic Sci Int Genet. 2018;37:162–171. doi: 10.1016/j.fsigen.2018.08.011
  103. Giardina E, Ragazzo M. Special Issue «Forensic Genetics and Genomics». Genes (Basel). 2021;12(2):158. doi: 10.3390/genes12020158
  104. Malik SD, Pillai JP, Malik U. Forensic genetics: Scope and application from forensic odontology perspective. J Oral Maxillofac Pathol. 2022;26(4):558–563. doi: 10.4103/jomfp.jomfp_341_21
  105. Hadi I, Abdullah M, Jaber A, Yoke C. Genetic variation of twenty autosomal STR loci and evaluate the importance of these loci for forensic genetic purposes. Afr J Biotechnol. 2014;13(11):1210–1218. doi: 10.5897/AJB2013.12923
  106. Dash HR, Rawat N, Kakkar S, Swain AK. Fundamentals of autosomal STR typing for forensic applications: Case studies. In: DNA fingerprinting: Advancements and future endeavors. 2018. Р. 209–221. doi: 10.1007/978-981-13-1583-1_12
  107. Sharma AK, Ghosh T. High autosomal STR allele sharing between full siblings. Aust J Forensic Sci. 2010;42(2):137–140. doi: 10.1080/00450610903258078
  108. Guerrini CJ, Brooks WB, Robinson JO, et al. IGG in the trenches: Results of an in-depth interview study on the practice, politics, and future of investigative genetic genealogy. Forensic Sci Int. 2024;356:111946. doi: 10.1016/j.forsciint.2024.111946
  109. Wickeheiser RA. Expanding DNA database effectiveness. Forensic Sci Int Synerg. 2022;4:100226. doi: 10.1016/j.fsisyn.2022.100226
  110. Ruitbrg CM, Reeder DJ, Butler JM. STRBase: A short tandem repeat DNA database for human identity testing community. Nucleic Acid Res. 2001;29(1):320–322. doi: 10.1093/nar/29.1.320
  111. Combied DNA index system (CODIS). Federal Beaureau of investigations (US). [2024 March 28]. Available from: http://www.justice.gov/oig/reports/FBI/a0126/final.pdf. Accessed: 15.07.2024.
  112. Combined DNA Index system. DNA Initiative [2024 March 28]. Available from: http://www.dna.gov/dna-databases/codis. Accessed: 15.07.2024.
  113. D’Atanasio E, Cruciani F, Trombetta B. Single-nucleotide polymorphisms: An overview of the sequence polymorphisms. In: Forensic DNA Analysis. 2021. P. 23–50. doi: 10.1201/9781003043027-3
  114. Kitamura M. [DNA typing for individual identification]. Yakugaku Zasshi. 2019;139(5):725–730. doi: 10.1248/yakushi.18-00166-6
  115. Wu L, Chu X, Zheng J, et al. Targeted capture and sequencing of 1245 SNPs for forensic applications. Forensic Sci Int Genet. 2019;42:227–234. doi: 10.1016/j.fsigen.2019.07.006
  116. Darwin D, Sakthivel S, Castelino RL, et al. Oral cavity: A forensic kaleidoscope. J Health Allied Sci. 2022;12(1):7–12. doi: 10.1055/s-0041-1731117
  117. Ata-Ali J, Ata-Ali F. Forensic dentistry in human identification: A review of the literature. J Clin Exp Dent. 2014;6(2):e162–e167. doi: 10.4317/jced.51387
  118. Rajkumari S. Oral autopsy-dental surgeon’s perspective. J Forensic Dent Sci. 2020;12(1):66–71. doi: 10.18311/jfds/12/1/2020.9
  119. Pandeshwar P, Das R. Role of oral fluids in DNA investigations. J Forensic Leg Med. 2014;22:45–50. doi: 10.1016/j.jflm.2013.12.007
  120. Lovisolo F, Ogbanga N, Sguazzi G, et al. Oral and skin microbiome as potential tools in forensic field. Forensic Sci Int Genet Suppl Ser. 2022;8:65–67. doi: 10.1016/j.fsigss.2022.09.024
  121. Heathfield LJ, Haikney TE, Mole CG, et al. Forensic human identification: Investigation into tooth morphotype and DNA extraction methods from teeth. Sci Justice. 2021;61(4):339–344. doi: 10.1016/j.scijus.2021.05.005
  122. Hochmeister MN. PCR analysis of DNA from fresh and decomposed bodies and skeletal remains in medico legal death investigations. Methods Mol Biol. 1998;98:19–26. doi: 10.1385/0-89603-443-7:19
  123. Smith BC, Fisher DL, Weedn VW, et al. A systematic approach to the sampling of Dental DNA. J Forensic Sci. 1993;38(5):1194–209. doi: 10.1520/jfs13524j
  124. Tran-Hung L, Tran-Thi N, Aboudharam G, et al. New method to extract dental pulp DNA: Application to universal detection of bacteria. PLoS One. 2007;2(10):e1062. doi: 10.1371/journal.pone.0001062
  125. Sweet D, Hildebrand D. Recovery of DNA from human teeth by cryogenic grinding. J Forensic Sci. 1998;43(6):1199–1202. doi: 10.1520/jfs14385j
  126. Kaleelullah RA, Hamid P. Forensic odontology, a boon and a humanitarian tool: A literature review. Cureus. 2020;12(3):e7400. doi: 10.7759/cureus.7400
  127. Qadri AW, Yadav S, Jain A, et al. Tooth as a vital source of DNA in forensic odontology: Recent perspective. J Dent Educ. 2023;9(2):73–79. doi: 10.25259/JADE_43_2023
  128. Lozano-Peral D, Rubio L, Santos I, et al. DNA degradation in human teeth exposed to thermal stress. Sci Rep. 2021;11(1):12118. doi: 10.1038/s41598-021-91505-8
  129. Raffone C, Baeta M, Lambacher N, et al. Intrinsic and extrinsic factors that may influence DNA preservation in skeletal remains: A review. Forensic Sci Int. 2021;325:110859. doi: 10.1016/j.forsciint.2021.110859
  130. Carrasco P, Inostroza C, Didier M, et al. Optimizing DNA recovery and forensic typing of degraded blood and dental remains using a specialized extraction method, comprehensive qPCR sample characterization, and massively parallel sequencing. Int J Legal Med. 2020;134(1):79–91. doi: 10.1007/s00414-019-02124-y
  131. Correa HS, Cortellini V, Brescia G, Verzeletti A. Human identification through DNA analysis of restored postmortem teeth. Forensic Sci Int Genet. 2020;47:102302. doi: 10.1016/j.fsigen.2020.102302
  132. Utama V, Tanjung R, Quendangen A, et al. The role of dental record data in the mass disaster identification process: A case report of the Sriwijaya SJ-182 airplane crash. In: Quality Improvement in Dental and Medical Knowledge, Research, Skills and Ethics Facing Global Challenges. CRC Press; 2024. P. 299–304. doi: 10.1201/9781003402374-46
  133. Pajnič IZ. Molecular genetic aspects of ancient DNA analyses. Zdrav Vestn. 2020;89(3-4):171–189. doi: 10.6016/ZdravVestn.2923
  134. EM-DAT: The OFDA/CRED International Disaster Database. Disaster Data: A Balanced Perspective. Issue 48. [2017, Sept]. Available from: http://www.emdat.be/#pager. Accessed: 15.07.2024.
  135. Dutta SR, Singh P, Passi D, et al. The role of dentistry in disaster management and victim identification: An overview of challenges in Indo-Nepal scenario. J Maxillofac Oral Surg. 2016;15:442–448. doi: 10.1007/s12663-016-0896-4
  136. Gambhir RS, Singh G, Talwar PS, et al. Knowledge and awareness of forensic odontology among dentists in India: A systematic review. J Forensic Dent Sci. 2016;8(1):2–6. doi: 10.4103/0975-1475.176954
  137. Lau G, Tan WF, Tan PH. After the Indian ocean tsunami: Singapore’s contribution to the international disaster victim identification effort in Thailand. Ann Acad Med Singapore. 2005;34(5):341–351.
  138. James H. Thai tsunami victim identification: Overview to date. J Forensic Odonto-stomatol. 2023;23(1):1–18.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Block diagram of PRISMA.

Download (284KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».