Ideal marker of renal glomerular filtration rate: myth or reality?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Estimation of kidney function is important in modern diagnostics due to the increasing prevalence of renal diseases. According to the Global Burden of Disease, the number of new cases of chronic kidney disease in the world increased by 25% in 2012–2021. Early detection of renal damage can improve the prognosis of the disease in a particular patient, reduce mortality and the need for replacement therapy. A common method for renal function assessing is the analysis of glomerular filtration rate (GFR). It is considered to be an indicator of renal function, since it decreases with kidney damage. The most common marker for GFR assessment is creatinine. However, its level has significant individual variability and a blind range, and with a decrease in glomerular filtration of creatinine, tubular secretion increases. In this regard, the aim of the review was to analyze the literature data and data of clinical studies concerning renal function markers based on GFR, as well as their comparison based on the characteristics of the “ideal” marker.

About the authors

Safiya S. Nasyryanova

N.I. Lobachevsky National Research State University of Nizhny Novgorod

Email: safiya.nasyryanova@mail.ru
ORCID iD: 0009-0004-5900-7394

5th year student of the Faculty of general medicine of the Institute of clinical medicine

Russian Federation, Nizhny Novgorod

Larisa M. Obukhova

N.I. Lobachevsky National Research State University of Nizhny Novgorod

Author for correspondence.
Email: ObuhovaLM@yandex.ru
ORCID iD: 0000-0003-4064-9616
SPIN-code: 5202-2387
Scopus Author ID: 25947675500

Dr. Sci. (Biology), associate professor, professor of the Department of multidisciplinary clinical training of the Institute of clinical medicine

Russian Federation, Nizhny Novgorod

References

  1. Institute for Health Metrics and Evaluation. GBD Results. GBD 2021. 2025, University of Washington. URL: https://vizhub.healthdata.org/gbd-results/?params=gbd-api-2021-permalink/dbb9f2e403d43b898887a99ec50ec6ff (date of access – 10.07.2025).
  2. World Health Organization. World health statistics 2024: Monitoring health for the SDGs, Sustainable Development Goals. 2024; 96 pp. URL: https://books.google.ru/books?id=4acOEQAAQBAJ (date of access – 10.07.2025). ISBN: 9240094709, 9789240094703.
  3. Li X, Lindholm B. Cardiovascular risk prediction in chronic kidney disease. Am J Nephrol. 2022;53(10):730–39. PMID: 36481730. https://doi.org/10.1159/000528560
  4. Клинические рекомендации. Хроническая болезнь почек (ХБП). Национальная ассоциация нефрологов. Рубрикатор клинических рекомендаций Минздрава России. 2024. ID: 469_3. Доступ: https://cr.minzdrav.gov.ru/preview-cr/469_3 (дата обращения – 10.07.2025) [Clinical guidelines. Chronic kidney disease (CKD). National Association of Nephrologists. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2024. ID: 469_3. URL: https://cr.minzdrav.gov.ru/preview-cr/469_3 (date of access – 10.07.2025) (In Russ.)].
  5. Волкова И.А., Савина М.И. Особенности методов оценки скорости клубочковой фильтрации. Медицинский алфавит. 2019;3(22):43–47. [Volkova IA, Savina MI. Features of methods of glomerular filtration rate estimation. Meditsinskiy alfavit = Medical Alphabet. 2019;3(22):43–47 (In Russ.)]. EDN: SRJRGX. https://doi.org/10.33667/2078-5631-2019-3-22(397)-43-47
  6. Каюков И.Г., Галкина О.В., Тимшина Е.И., Зубина И.М., Михеева А.Ю., Бердичевский Г.М. Креатинин в современной оценке функционального состояния почек (обзор литературы и собственные данные). Нефрология. 2020;24(4):21–36. [Kayukov IG, Galkina OV, Timshina EI, Zubina IM, Miheeva AYu, Berdichevsky GM. Creatinin in the modern evaluation of the kidneys functional condition (literature review and own data). Nefrologiya = Nephrology (Saint Petersburg). 2020;24(4):21–36 (In Russ.)]. EDN: QNVIIX. https://doi.org/10.36485/1561-6274-2020-24-4-21-36
  7. Ferguson MA, Waikar SS. Established and emerging markers of kidney function. Clin Chem. 2012;58(4):680–89. PMID: 22311920. PMCID: PMC5136473. https://doi.org/10.1373/clinchem.2011.167494
  8. Вельков В.В., Резникова О.И. Современная лабораторная диагностика ренальных патологий: от ранних стадий до острой почечной недостаточности: методическое пособие. М.: ЗАО «Диакон». 2010; 9 с. [Velkov VV, Reznikova OI. Modern laboratory diagnostics of renal pathologies: From early stages to acute renal failure: A methodical guide. Moscow: Diakon, 2010; 9 pp. (In Russ.)].
  9. Spencer S, Desborough R, Bhandari S. Should cystatin C eGFR become routine clinical practice? Biomolecules. 2023;13(7):1075. PMID: 37509111. PMCID: PMC10377068. https://doi.org/10.3390/biom13071075
  10. Мирошников М.В., Ковалева М.А., Султанова К.Т. Обзор методов определения скорости клубочковой фильтрации в доклинических исследованиях. Лабораторные животные для научных исследований. 2024;(3):66–77. [Miroshnikov MV, Kovaleva MA, Sultanova KT. Review of methods for determining the glomerular filtration rate in preclinical studies. Laboratornye zhivotnye dlya nauchnykh issledovaniy = Laboratory Animals for Science. 2024;(3):66–77 (In Russ.)]. EDN: IMJIQA. https://doi.org/10.57034/2618723X-2024-03-06
  11. Inker LA, Titan S. Measurement and estimation of GFR for use in clinical practice: Core Curriculum 2021. Am J Kidney Dis. 2021;78(5):736–49. PMID: 34518032. https://doi.org/10.1053/j.ajkd.2021.04.016
  12. Xin C, Xie J, Fan H, Sun X, Shi B. Association between serum cystatin C and thyroid diseases: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2021;12:766516. PMID: 34867811. PMCID: PMC8639734. https://doi.org/10.3389/fendo.2021.766516
  13. Liang S, Shi M, Bai Y, Deng Y, Fang M, Li J et al. The effect of glucocorticoids on serum cystatin C in identifying acute kidney injury: A propensity-matched cohort study. BMC Nephrol. 2020;21(1):519. PMID: 33246435. PMCID: PMC7694927. https://doi.org/10.1186/s12882-020-02165-1
  14. Клинические практические рекомендации KDIGO 2012 по диагностике и лечению хронической болезни почек. Нефрология и диализ. 2017;19(1):22–206. [KGIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Nefrologiya i dializ = Nephrology and Dialysis. 2017;19(1):22–206 (In Russ.)]. EDN: YKVZBX. https://doi.org/10.28996/1680-4422-2017-1-22-206
  15. Argyropoulos CP, Chen SS, Ng Y-H, Roumelioti M-E, Shaffi K, Singh PP, Tzamaloukas AH. Re-discovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front Med (Lausanne). 2017;4:73. PMID: 28664159. PMCID: PMC5471312. https://doi.org/10.3389/fmed.2017.00073
  16. Муркамилов И.Т., Айтбаев К.А., Муркамилова Ж.А., Фомин В.В., Юсупов Ф.А. Бета-2-микроглобулин как биомаркер при хронической болезни почек. The Scientific Heritage. 2021;59-2(59):45–55. [Murkamilov IT, Aitbaev KA, Murkamilova ZhA, Fomin VV, Yusupov FA. Beta-2-microglobulin as a biomarker in chronic kidney disease. The Scientific Heritage. 2021;59-2(59):45–55 (In Russ.)]. EDN: UBYKCQ. https://doi.org/10.24412/9215-0365-2021-59-2-45-55
  17. Казаченко А.В., Войтко Д.А., Просянников М.Ю., Константинова О.В., Анохин Н.В, Аполихин О.И., Каприн А.Д. Современные маркеры определения функциональной способности почек в урологической практике. Экспериментальная и клиническая урология. 2023;16(1):174–187. [Kazachenko AV, Voytko DA, Prosyannikov MYu, Konstantinova OV, Anokhin NV, Apolikhin OI, Kaprin AD. Modern markers for determining the functional ability of the kidneys in urological practice. Eksperimental’naya i klinicheskaya urologiya = Experimental and Clinical Urology. 2023;16(1):174–187 (In Russ.)]. https://doi.org/10.29188/2222-8543-2023-16-1-174-187
  18. Foster MC, Coresh J, Hsu C-Y, Xie D, Levey AS, Nelson RG et al.; CKD Biomarker Consortium and the CRIC Study Investigators. Serum β-trace protein and β2-microglobulin as predictors of ESRD, mortality, and cardiovascular disease in adults with CKD in the chronic renal insufficiency cohort (CRIC) study. Am J Kidney Dis. 2016;68(1):68–76. PMID: 26948990. PMCID: PMC4921300. https://doi.org/10.1053/j.ajkd.2016.01.015
  19. Inker LA, Couture SJ, Tighiouart H, Abraham AG, Beck GJ, Feldman HI et al.; CKD-EPI GFR Collaborators. A new panel-estimated GFR, including β2-microglobulin and β-trace protein and not including race, developed in a diverse population. Am J Kidney Dis. 2021;77(5):673–683.e1. PMID: 33301877. PMCID: PMC8102017. https://doi.org/10.1053/j.ajkd.2020.11.005
  20. Uemura O, Ishikura K, Kamei K, Hamada R, Yamamoto M, Gotoh Y et al. Comparison of inulin clearance with 2-h creatinine clearance in Japanese pediatric patients with renal disease: Open-label phase 3 study of inulin. Clin Exp Nephrol. 2022;26(2):132–39. PMID: 34562149. PMCID: PMC8770449. https://doi.org/10.1007/s10157-021-02133-5
  21. Ebert N, Schaeffner E, Seegmiller JC, van Londen M, Bökenkamp A, Cavalier E et al.; European Federation of Clinical Chemistry and Laboratory Medicine Task Group on Chronic Kidney Disease (EFLM TG-CKD). Iohexol plasma clearance measurement proto-col standardization for adults: A consensus paper of the European Kidney Function Consortium. Kidney Int. 2024;106(4):583–96. PMID: 39097002. https://doi.org/10.1016/j.kint.2024.06.029
  22. Ebert N, Bevc S, Bökenkamp A, Gaillard F, Hornum M, Jager KJ et al. Assessment of kidney function: Clinical indications for measured GFR. Clin Kidney J. 2021;14(8):1861–70. PMID: 34345408. PMCID: PMC8323140. https://doi.org/10.1093/ckj/sfab042
  23. Cheng W, Zhao F, Tang C-Y, Li X-W, Luo M, Duan S-B. Comparison of iohexol and iodixanol induced nephrotoxicity, mitochondrial damage and mitophagy in a new contrast-induced acute kidney injury rat model. Arch Toxicol. 2018;92(7):2245–57. PMID: 29860548. https://doi.org/10.1007/s00204-018-2225-9
  24. Good Clinical Practice Network. Клиническое испытание NCT01545531. Двухточечное измерение скорости клубочковой фильтрации по исчезновению йогексола в плазме. Доступ: https://ichgcp.net/ru/clinical-trials-registry/NCT01545531 (дата обращения – 10.07.2025). [Good Clinical Practice Network. Clinical Trial NCT01545531. Two-Point Measurement of Glomerular Filtration Rate by Iohexol Plasma Disappearance. URL: https://ichgcp.net/ru/clinical-trials-registry/NCT01545531 (date of access – 10.07.2025) (In Russ.)].
  25. Utiel FJB, Navarro AMR, de la Rosa RE, Soto JAB. Comparison of MDRD and the old CKD-EPI equations with the new CKD-EPI equations in kidney transplant patients when glomerular filtration rate is measured with 51Cr-EDTA. Nefrologia (Engl Ed). 2020;40(1):53–64. PMID: 31843209. https://doi.org/10.1016/j.nefro.2019.07.006
  26. Чехонацкая М.Л., Аверьянов А.П., Утц И.А., Великанова М.Г., Бобылев Д.А., Chekhonatsky I.A. Лучевые методы оценки функции почек у детей. Саратовский научно-медицинский журнал. 2018;14(3):385–388. [Chekhonatskaya ML, Averyanov AP, Utz IA, Velikanova MG, Bobylev DA, Chekhonatsky IA. Saratovskiy nauchno-meditsinskiy zhurnal = Saratov Journal of Medical Scientific Research. 2018;14(3):385–388 (In Russ.)]. EDN: YZNJCH.
  27. Смирнов И.Е., Комарова Н.Л., Герасимова Н.П., Видюков В.И. Новая технология радионуклидной оценки функциональной активности почечной ткани у детей. Российский педиатрический журнал. 2014;17(5):30–33. [Smirnov IE, Komarova NL, Gerasimova NP, Vidyukov VI. New radionuclide technology for the assessment of the functional activity of renal tissue in children. Rossiiskii pediatricheskii zhurnal = Russian Pediatric Journal. 2014;17(5):30–33 (In Russ.)]. EDN: TANOHL.
  28. Molitoris BA, Reilly ES. Quantifying glomerular filtration rates in acute kidney injury: A re-quirement for translational success. Semin Nephrol. 2016;36(1):31–41. PMID: 27085733. PMCID: PMC4834456. https://doi.org/10.1016/j.semnephrol.2016.01.008
  29. Perez ZH, Weinfurter S, Gretz N. Transcutaneous assessment of renal function in conscious rodents. J Vis Exp. 2016;(109):e53767. PMID: 27078159. PMCID: PMC4841314. https://doi.org/10.3791/53767
  30. Fanous MS, Afolabi JM, Michael OS, Falayi OO, Iwhiwhu SA, Adebiyi A. Transdermal measurement of glomerular filtration rate in mechanically ventilated piglets. J Vis Exp. 2022;(187):10.3791/64413. PMID: 36190295. PMCID: PMC9835146. https://doi.org/10.3791/64413
  31. Scarfe L, Schock-Kusch D, Ressel L, Friedemann J, Shulhevich Y, Murray P et al. Transdermal measurement of glomerular filtration rate in mice. J Vis Exp. 2018;(140):58520. PMID: 30394397. PMCID: PMC6235579. https://doi.org/10.3791/58520
  32. Steinbach S, Krolop N, Strommer S, Herrera-Pérez Z, Geraci S, Friedemann J et al. A pilot study to assess the feasibility of transcutaneous glomerular filtration rate measurement using fluorescence-labelled sinistrin in dogs and cats. PLoS One. 2014;9(11):e111734. PMID: 25423195. PMCID: PMC4244090. https://doi.org/10.1371/journal.pone.0111734
  33. Molitoris BA. Rethinking CKD evaluation: Should we be quantifying basal or stimulated GFR to maximize precision and sensitivity? Am J Kidney Dis. 2017;69(5):675–83. PMID: 28223001. PMCID: PMC5403623. https://doi.org/10.1053/j.ajkd.2016.11.028
  34. Charlton JR, Tan W, Daouk G, Teot L, Rosen S, Bennett KM et al. Beyond the tubule: Pathological variants of LRP2, encoding the megalin receptor, result in glomerular loss and early progressive chronic kidney disease. Am J Physiol Renal Physiol. 2020;319(6):F988–F999. PMID: 33103447. PMCID: PMC7792689. https://doi.org/10.1152/ajprenal.00295.2020
  35. Zhang J, Wei J, Jiang S, Xu L, Wang L, Cheng F et al. Macula densa SGLT1-NOS1-tubuloglomerular feedback pathway, a new mechanism for glomerular hyperfiltration during hyperglycemia. J Am Soc Nephrol. 2019;30(4):578–93. PMID: 30867247. PMCID: PMC6442354. https://doi.org/10.1681/asn.2018080844
  36. Carlström M, Carvalho LRRA, Guimaraes D, Boeder A, Schiffer TA. Di-methyl malonate preserves renal and mitochondrial functions following ischemia-reperfusion via inhibition of succinate dehydrogenase. Redox Biol. 2024;69:102984. PMID: 38061207. PMCID: PMC10749277. https://doi.org/10.1016/j.redox.2023.102984
  37. Pottel H, Delanaye P, Cavalier E. Exploring renal function assessment: Creatinine, cystatin C, and estimated glomerular filtration rate focused on the European Kidney Function Consortium Equation. Ann Lab Med. 2024;44(2):135–43. PMID: 37909162. PMCID: PMC10628758. https://doi.org/10.3343/alm.2023.0237
  38. Jaques DA, Davenport A. Serum β2-microglobulin as a predictor of residual kidney function in peritoneal dialysis patients. J Nephrol. 2021;34(2):473–81. PMID: 33270187. PMCID: PMC8036192. https://doi.org/10.1007/s40620-020-00906-x
  39. White CA, Ghazan-Shahi S, Adams MA. β-Trace protein: A marker of GFR and other biological pathways. Am J Kidney Dis. 2015;65(1):131–46. PMID: 25446025. https://doi.org/10.1053/j.ajkd.2014.06.038
  40. Государственный реестр лекарственных средств Минздрава России. Инструкции по медицинскому применению лекарственных препаратов с МНН йодиксанол. Доступ: https://grls.rosminzdrav.ru/GRLS.aspx?RegNumber=&MnnR=Йодиксанол&lf=&TradeNmR=&OwnerName=&MnfOrg=&MnfOrgCountry=&isfs=0®type=1%2c6&pageSize=10&token=496ef1aa-5986-4c9e-82c6-1ffb9bf1a206&order=Registered&orderType=desc&pageNum=1 (дата обращения – 10.07.2025). [State Register of Medicines of the Ministry of Healthcare of Russia. Instructions for medical use of drugs with INN iodixanol. URL: https://grls.rosminzdrav.ru/GRLS.aspx?RegNumber=&MnnR=Йодиксанол&lf=&TradeNmR=&OwnerName=&MnfOrg=&MnfOrgCountry=&isfs=0®type=1%2c6&pageSize=10&token=496ef1aa-5986-4c9e-82c6-1ffb9bf1a206&order=Registered&orderType=desc&pageNum=1 (date of access – 10.07.2025) (In Russ.)].

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).