Том 67, № 1 (2021): Дифференциальные уравнения с частными производными

Статьи

Отсутствие нетривиальных слабых решений некоторых нелинейных неравенств с градиентной нелинейностью

Адмасу В.Э., Галахов Е.И., Салиева О.А.

Аннотация

В этой статье мы модифицируем результаты, полученные Митидиери и Похожаевым о достаточных условиях отсутствия нетривиальных слабых решений нелинейных неравенств и систем с целыми степенями оператора Лапласа и с нелинейным слагаемым вида a(x)|∇(Δmu)|q+ b(x)|∇u|s. Мы получаем оптимальные априорные оценки, применяя метод нелинейной емкости с соответствующим выбором пробных функций. В итоге мы доказываем отсутствие нетривиальных слабых решений нелинейных неравенств и систем от противного.

Современная математика. Фундаментальные направления. 2021;67(1):1-13
pages 1-13 views

Асимптотический анализ краевых задач для оператора Лапласа с частой сменой типа граничных условий

Борисов Д.И.

Аннотация

Настоящая работа, которую уместно рассматривать как небольшую монографию, посвящена исследованию двух- и трехмерных краевых задач на собственные значения для оператора Лапласа с частым чередованием типа граничных условий. Основной целью является построение асимптотических разложений собственных значений и собственных функций рассматриваемых задач. Асимптотические разложения строятся на основе оригинальных комбинаций методов асимптотического анализа: метода согласования асимптотических разложений, метода пограничного слоя и метода многих масштабов. Проводится анализ коэффициентов формально построенных асимптотических рядов. Для строго периодического и локально периодического чередования краевых условий описанный подход позволяет строить полные асимптотические разложения собственных значений и собственных функций. В случае непериодического чередования и усредненного третьего краевого условия получены достаточно слабые условия на структуру чередования, при которых удается построить первые поправки в асимптотиках для собственных значений и собственных функций; указанные условия включают в рассмотрение широкий класс различных случаев непериодического чередования. При дальнейшем, весьма серьезном ослаблении условий на структуру чередования удается получить двусторонние оценки скорости сходимости собственных значений возмущенной задачи; показано, что эти оценки неулучшаемы по порядку. Для соответствующих собственных функций также получены неулучшаемые по порядку оценки скорости сходимости.

Современная математика. Фундаментальные направления. 2021;67(1):14-129
pages 14-129 views

Усреднение параболических уравнений высокого порядка с периодическими коэффициентами

Милослова А.А., Суслина Т.А.

Аннотация

В L2(Rd;Cn) рассматривается широкий класс матричных эллиптических операторов Aε порядка 2p (где p≥2) с периодическими быстро осциллирующими коэффициентами (зависящими от x/ε). Здесь ε > 0 - малый параметр. Изучается поведение операторной экспоненты e-Aετ при τ > 0 и малом ε. Показано, что при ε → 0 оператор e-Aετ сходится по операторной норме в L2(Rd;Cn) к экспоненте e-A0τ от эффективного оператора A0. Получена также аппроксимация операторной экспоненты e-Aετ по норме операторов, действующих из L2(Rd;Cn) в пространство Соболева Hp(Rd; Cn). Установлены оценки погрешностей найденных приближений, зависящие от двух параметров: ε и τ. При фиксированном τ > 0 погрешности имеют точный порядок O(ε). Результаты применяются к вопросу о поведении решения задачи Коши для параболического уравнения τuε(x,τ)= -(Aε uε)(x,τ)+F(x,τ) в Rd.

Современная математика. Фундаментальные направления. 2021;67(1):130-191
pages 130-191 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».