Том 71, № 3 (2025): Труды Крымской осенней математической школы-симпозиума

Статьи

Об одном методе решения начально-краевой задачи для уравнения Гарднера

Безродных С.И., Пикулин С.В.

Аннотация

Рассматривается вопрос об эффективном решении начально-краевой задачи для уравнения Гарднера - пространственно одномерного нелинейного эволюционного уравнения, описывающего широкий класс дисперсионных автоволновых процессов. В работе предложен численно-аналитический метод, основанный на сочетании явной и неявной схемы дискретизации по времени для различных членов дифференциального оператора. Для решения последовательности вспомогательных линейных задач разработан новый эффективный алгоритм, опирающийся на аналитические представления с использованием явного вида фундаментальной системы решений. Рассмотрен пример численного решения начально-краевой задачи для уравнения Гарднера и проведено сопоставление результата с известным точным решением типа уединенной бегущей волны.

Современная математика. Фундаментальные направления. 2025;71(3):353-369
pages 353-369 views

Моделирование эволюционных стратегий взаимодействующих популяций на неоднородном ареале

Зеленчук П.А., Цибулин В.Г.

Аннотация

На примере системы «хищник-жертва» в условиях неоднородного ареала построена математическая модель взаимодействующих популяций, обладающая разнообразными эволюционными стратегиями. Модель основана на системе уравнений в частных производных «диффузия-адвекция-реакция» и позволяет учитывать многофакторный таксис видов. Предложены модифицированные функции локального взаимодействия хищника и жертвы, обеспечивающие многообразие эволюционных стратегий системы. Исследован ряд ключевых параметров, отвечающих за формирование стратегий с идеальным свободным распределением (ИСР). Рассмотрены функции миграции, позволяющие учесть все виды направленного движения особей жертвы и хищника. Приведены условия для потоковых параметров системы, при которых возможна реализация ИСР-подобных стратегий. Представлены результаты вычислительных экспериментов для ряда стационарных и колебательных режимов.

Современная математика. Фундаментальные направления. 2025;71(3):370-384
pages 370-384 views

Моделирование исследования вязкоупругого деформирования упругих тел

Нескородев Р.Н., Зыза А.В.

Аннотация

В статье предложена численно-аналитическая методика решения задач линейной вязкоупругости анизотропного тела, не требующая явного построения аналитического представления ядер ползучести и релаксации. Приближенное решение интегральных уравнений базируется на непосредственном использовании экспериментальных данных, предварительно сглаженных и заполненных более густой сеткой. Таким образом, решение граничных задач вязкоупругости сводится к решению задач теории упругости в произвольный момент времени.

Современная математика. Фундаментальные направления. 2025;71(3):385-394
pages 385-394 views

Существование и единственность решения начальнокраевой задачи для одномерных уравнений динамики сжимаемой вязкой смеси

Ноговищева В.Ю., Прокудин Д.А.

Аннотация

В статье изучается начально-краевая задача для одномерных уравнений динамики сжимаемой вязкой смеси. Доказывается теорема существования и единственности решения начально-краевой задачи без каких-либо ограничений на структуру матрицы вязкостей, кроме стандартных физических требований симметричности и положительной определенности.

Современная математика. Фундаментальные направления. 2025;71(3):395-416
pages 395-416 views

Формула Лефшеца для нелокальных эллиптических задач, ассоциированных с расслоением

Орлова Н.Р.

Аннотация

Рассматриваются эллиптические комплексы операторов, ассоциированные с расслоением. Даётся формула Атьи-Ботта-Лефшеца для эндоморфизмов таких комплексов. Доказательство основано на методе стационарной фазы. Для оценки остаточного члена используются волновые фронты распределений.
Современная математика. Фундаментальные направления. 2025;71(3):417-442
pages 417-442 views

Непрерывная популяционная модель поколений с разрывными характеристиками жизненного цикла

Переварюха А.Ю.

Аннотация

Традиционно непрерывные модели математической биологии направлены на динамику взаимодействующих популяций как стационарных гомогенных общностей. Состояние популяций в уравнениях регулируется общими для всех особей \( \forall t,N(t) \) факторами эффективности воспроизводства, гибели, ограничения жизненного пространства или лимитом ресурсов. Существуют много видов с неперекрывающейся последовательностью поколений, сменяющих друг друга в разных сезонных условиях. Число годовых поколений --- важная характеристика экологии вида при захвате нового ареала. Длина жизненного цикла и показатель репродуктивной активности r у смежных поколений насекомых в ареале различны из-за необходимости зимовки. Колебания этих величин влияют на стремительные вспышки численности. Показано, что применение дискретных моделей \( x_{n+1}=\psi(x_n;r)\varphi(x_{n-i})-\Xi \)  оказывается нереалистично по фундаментальным причинам. Появление циклов \( p\neq2^i \) в порядке теоремы Шарковского избыточно для анализа популяций и прогноза массовых размножений насекомых. В статье предложен метод организации моделей сопряженного развития череды поколений в системе разрывных дифференциальных уравнений как последовательности краевых задач. Модель событийно переопределяется для получения решения на отрезках времени, соответствующих условиям сезона. Модель с учетом конкуренции и запаздывающей регуляции актуальна для анализа череды пиков активности вредителей, для которых характерны отдельные чрезвычайно многочисленные поколения.

Современная математика. Фундаментальные направления. 2025;71(3):443-451
pages 443-451 views

Равносходимость разложений по корневым функциям дифференциального оператора и в тригонометрический ряд Фурье

Рыхлов В.С.

Аннотация

Рассматривается несамосопряженный обыкновенный дифференциальный оператор, определяемый на конечном отрезке линейным дифференциальным выражением \( n \)-го порядка с ненулевым коэффициентом при \( (n-1) \)-й производной и двухточечными регулярными по Биркгофу краевыми условиями. Исследуется вопрос о равномерной равносходимости разложений заданной функции в биортогональный ряд по собственным и присоединенным или, кратко, корневым функциям этого оператора и в обычный тригонометрический ряд Фурье, а также об оценке разности соответствующих частичных сумм (или, коротко, о скорости равносходимости) при самых общих условиях на разлагаемую функцию и коэффициент при \( (n-1) \)-й производной. Получены оценки разности разложений в терминах общих (интегральных) модулей непрерывности разлагаемой функции и коэффициента при \( (n-1) \)-й производной, равномерные внутри основного интервала. Из этих оценок выводятся соответствующие оценки в случае, когда модули непрерывности оцениваются сверху медленно меняющимися функциями и, в частности, логарифмическими функциями. На основе этого сформулированы достаточные условия равносходимости в указанных случаях. Эти результаты получаются с использованием полученной ранее автором оценки разности частичных сумм  разложений заданной функции в биортогональный ряд по собственным и присоединенным функциям рассматриваемого дифференциального оператора и в модифицированный тригонометрический ряд Фурье, а также аналогов теоремы Штейнгауза. Модификация тригонометрического ряда Фурье заключается в применении к обычному тригонометрическому ряду Фурье вполне конкретного ограниченного оператора, выражающегося через коэффициент при \( (n-1) \)-й производной, а к разлагаемой функции --- обратного к нему оператора.

Современная математика. Фундаментальные направления. 2025;71(3):452-477
pages 452-477 views

Второй четырехэлектронный синглет в примесной модели Хаббарда

Ташпулатов С.М., Парманова Р.Т.

Аннотация

Мы рассматриваем оператор энергии четырехэлектронных систем в примесной модели Хаббарда и исследуем структуру существенного спектра и дискретных спектров для второго синглетного состояния системы. Показано, что в одномерном и двумерном случаях для существенного и дискретного спектра существуют такие ситуации: (а). существенный спектр оператора второго синглетного состояния четырех электронов в примесной модели Хаббарда состоит из объединения восьми сегментов, а дискретный спектр оператора состоит из шести собственных значений; (б). существенный спектр оператора состоит из объединения шестнадцати сегментов, а дискретный спектр оператора состоит из четырнадцати собственных значений; (в). существенный спектр оператора состоит из объединения тринадцати сегментов, а дискретный спектр оператора состоит из девяти собственных значений; (г). существенный спектр оператора состоит из объединения трех сегментов, а дискретный спектр оператора состоит из трех собственных значений. В трехмерном случае возникают такие ситуации: (а). существенный спектр оператора состоит из объединений восьми сегментов, а дискретный спектр оператора состоит из шести собственных значений, или существенный спектр оператора состоит из объединений трех сегментов, а дискретный спектр оператора состоит из трех собственных значений; (б). существенный спектр оператора состоит из объединений восьми сегментов, а дискретный спектр оператора состоит из шести собственных значений; (в). существенный спектр оператора состоит из объединений шестнадцати сегментов, а дискретный спектр оператора состоит из четырнадцати собственных значений; (г). существенный спектр оператора состоит из объединений трех сегментов, а дискретный спектр оператора состоит из трех собственных значений.
Современная математика. Фундаментальные направления. 2025;71(3):478-507
pages 478-507 views

Колебания вязкой жидкости с инерционной свободной поверхностью

Цветков Д.О.

Аннотация

Исследуется задача о малых движениях и нормальных колебаниях вязкой жидкости, когда на свободной поверхности находятся весомые частицы некоторого вещества, которые в процессе колебания свободной поверхности не взаимодействуют друг с другом, или их взаимодействие пренебрежимо мало. Исходная начально-краевая задача сводится к задаче Коши для дифференциального уравнения первого порядка в некотором гильбертовом пространстве. После детального изучения свойств операторных коэффициентов доказана теорема о разрешимости полученной задачи Коши. На этой основе найдены достаточные условия существования решения начально-краевой задачи, описывающей эволюцию исходной гидросистемы. Доказаны утверждения о структуре спектра задачи и о базисности системы собственных функций.
Современная математика. Фундаментальные направления. 2025;71(3):508-523
pages 508-523 views

Спектральное разложение самосопряжённых операторов в пространствах Понтрягина и Крейна

Штраус В.А.

Аннотация

Рассмотрен самосопряжённый оператор, действующий в пространстве Крейна и обладающий инвариантным подпространством, которое является максимальным неотрицательным и распадается в прямую сумму равномерно положительного (т. е. эквивалентного гильбертову пространству по отношению к внутреннему псевдоскалярному произведению) и конечномерного нейтрального подпространств. Доказано существование разностного выражения, преобразующего порождённую этим оператором последовательность моментов в последовательность, представимую как разность позитивных последовательностей моментов. В случае циклического оператора этот результат применён для построения функционального пространства, в котором исследуемый оператор моделируется как оператор умножения на независимую переменную.

Современная математика. Фундаментальные направления. 2025;71(3):524-546
pages 524-546 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».