Существование решения задачи со свободной границей для систем «реакция-диффузия»

Обложка

Цитировать

Полный текст

Аннотация

В работе доказывается существование решения новой задачи со свободной границей для систем типа «реакция-диффузия», описывающих рост биологических тканей вследствие притока клеток и пролиферации. Для этого задача сводится к задаче с закрепленной границей через замену переменных. Полученная задача имеет зависящие от времени и положения в пространстве коэффициенты с нелинейными слагаемыми. Затем мы доказываем существование решения для соответствующей линейной задачи и с помощью теоремы о неподвижной точке получаем существование решения нелинейной задачи. Наконец, мы возвращаемся к задаче со свободной границей и делаем вывод о существовании ее решения.

Об авторах

Г. А. Юнес

Institut Camille Jordan; University Lyon 1

Автор, ответственный за переписку.
Email: volpert@math.univ-lyon1.fr
Виллербанн, Франция

Н. Эль Хатиб

Lebanese American University

Email: volpert@math.univ-lyon1.fr
Библос, Ливан

В. А. Вольперт

Российский университет дружбы народов

Email: volpert@math.univ-lyon1.fr
Москва, Россия

Список литературы

  1. Bessonov N., Morozova N., Volpert V. Modeling of branching patterns in plants// Bull. Math. Biol. - 2008. - 70. - C. 868-893.
  2. Fok P.-W. Mathematical model of intimal thickening in atherosclerosis: vessel stenosis as a free boundary problem// J. Theor. Biol. - 2012. - 314. - C. 23-33.
  3. Islam H., Johnston P. R. A mathematical model for atherosclerotic plaque formation and arterial wall remodelling// ANZIAM J. - 2016. - 57. - C. C320-C345.
  4. Ladyzenskaja O. A., Solonnikov V. A., Ural’tseva N. N. Linear and Quasi-linear Equations of Parabolic Type. - Providence: Am. Math. Soc., 1968.
  5. Lunardi A. Analytic Semigroups and Optimal Regularity in Parabolic Problems. - Basel etc.: Springer, 1995.
  6. Silva T., Ja¨ger W., Neuss-Radu M., Sequeira A. Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability// J. Theor. Biol. - 2020. - 496. - 110229.
  7. Tao Y., Guo Q. A free boundary problem modelling cancer radiovirotherapy// Math. Models Methods Appl. Sci. - 2007. - 17, № 8. - C. 1241-1259.
  8. Yousefnezhad M., Mohammadi S. A., Bozorgnia F. A free boundary problem for a predator-prey model with nonlinear prey-taxis// Appl. Math. - 2018. - 63. - C. 125-147.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».