Salinity effect of permafrost temperature predictions by the example of the Yamal Peninsula

Cover Page

Cite item

Full Text

Abstract

This research is focused on quantitative assessment of salinity influence on predictions of permafrost temperature on a regional scale. The relevance is determined by the intensive economic development of the Yamal Peninsula and the observed climate change in the Arctic. Reducing the uncertainty in forecast predictions of the permafrost temperature helps to reduce the value of the safety margin when designing the ground foundations of buildings and structures, avoiding the development of negative geoprocesses during their construction and operation. The object of the study is the permafrost of the Yamal Peninsula, which is continuously distributed and forms the foundation of the majority of buildings and structures in operation. The temperature of the saline permafrost is the subject of the study. The methods used combine thermodynamic and mathematical modelling and climate change consideration. The mean annual ground temperature by mid-century is predicted for three regions of the peninsula – north-western and western Yamal as well as the lower course of the Ob River. The temperature of the permafrost was determined by two independent approaches. In the first case, we used the heat-exchange characteristics of rocks which are constant for the forecast period, and in the second case – those that change with the transformation of the water-ionic composition of pore solutions. The minimum difference between the obtained temperature values is 0.1–0.2 °C in the north-western Yamal. The largest discrepancy between the modelling results is observed for the lower Ob River and reaches 0.5–0.6 °С. Neglecting the salinity of the permafrost and its properties for the period of geocryological forecasting leads to an error in determining the mean annual ground temperature of up to 20%. With the increase of pore solution salinity from 35 to 150 g/l, the difference in calculations increases by 15–20%. The mean annual ground temperature obtained with constant heat transfer characteristics turn out to be underestimated in comparison with the results of the problem with time-varying characteristics. Improving the geocryological forecast methodology will make it possible to more reasonably approach the assessment of the future thermal state of saline permafrost under climate change.

References

  1. Melnikov V. P., Osipov V. I., Brouchkov A. V., Badina S. V., Sadurtdinov M. R., Drozdov D. S., Malkova G. V., Zheleznyak M. N., Zhdaneev O. V., Ostarkov N. A., Osokin A. B., Sergeev D. O., Dubrovin V. A., Kuznetsov M. E., Frolov K. N., Alekseev A. G., Fedorov R. Y. Past and Future of Permafrost Monitoring: Stability of Russian Energetic Infrastructure // Energies. 2022. Vol. 15(9). 3190. doi: 10.3390/en15093190.
  2. Мельников В. П., Осипов В. И., Брушков А. В., Бадина С. В., Дроздов Д. С., Дубровин В. А., Железняк М. Н., Садуртдинов М. Р., Сергеев Д. О., Остарков Н. А., Фалалеева А. А., Шелков Я. Ю. Оценка ущерба жилым и промышленным зданиям и сооружениям при изменении температур и оттаивании многолетнемерзлых грунтов в Арктической зоне Российской Федерации к середине XXI века // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2021. № 1. С. 14-31. doi: 10.31857/S0869780921010070.
  3. Alexandrov G. A., Ginzburg V. A., Insarov G. E., Romanovskaya A. A. CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5–8.5 scenario // Climatic Change. 2021. Vol. 169(42). doi: 10.1007/s10584-021-03292-w.
  4. Kislov A., Alyautdinov A., Baranskaya A., Belova N., Bogatova D., Vikulina M., Zheleznova I., Surkova G. A Spatially Detailed Projection of Environmental Conditions in the Arctic Initiated by Climate Change // Atmosphere. 2023. Vol. 14. 1003. doi: 10.3390/atmos14061003.
  5. Streletskiy D. A., Suter L. J., Shiklomanov N. I., Porfiriev B. N., Eliseev D. O. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost // Environmental Research Letters. 2019. Vol. 14(2). 025003. doi: 10.1088/1748-9326/aaf5e6.
  6. Аксенов В. И. Засоленные мерзлые грунты арктического побережья как основание сооружений. М.: Все о мире строительства, 2008.
  7. Брушков А. В. Засоленные мерзлые породы Арктического побережья, их происхождение и свойства. М.: Издательство МГУ, 1998.
  8. Комаров И. А. Проблемы прогноза свойств засоленных мерзлых пород и интенсивности протекания в них мерзлотных процессов // Мониторинг в криолитозоне: материалы Шестой конференции геокриологов России. М., 2022. С. 11-48.
  9. Дубиков Г. И., Иванова Н. В. Засоленные мерзлые грунты и их распространение на территории СССР // Засоленные мерзлые грунты как основания сооружений / под ред. С.С. Вялова. М.: Наука, 1990. С. 3-9.
  10. Дубиков Г. И. Состав и криогенное строение мерзлых толщ Западной Сибири. М.: ГЕОС, 2002.
  11. Дубиков Г. И., Иванова Н. В., Зыков Ю. Д., Червинская О. П., Красовский А. Г. Засоление прибрежных отложений и их коррозионная агрессивность // Криосфера Земли. 1999. Т. III. № 1. С. 43-51.
  12. Буданцева Н. А., Баду Ю. Б., Васильчук Ю. К., Подборный Е. Е. Засоленность грунтов // Криосфера нефтегазоконденсатных месторождений полуострова Ямал. Том 1. Криосфера Харасавейского газоконденсатного месторождения / под ред. Ю. К. Васильчука, Г. В. Крылова, Е. Е. Подборного. Тюмень – Санкт-Петербург: Недра, 2006. С. 134-159.
  13. Баду Ю. Б., Дубиков Г. И., Иванова Н. В. Состав и строение криогенной толщи на Западном Ямале // Лабораторные и полевые исследования мерзлых грунтов и льдов. М.: Стройиздат, 1986. С. 27-35.
  14. Иванова Н. В. Засоленность мерзлых грунтов. Криопэги // Геокриологические условия Харасавэйского и Крузенштерновского газоконденсатных месторождений (полуостров Ямал) / под ред. В. В. Баулина. М.: ГЕОС, 2003. С. 83-92.
  15. Баду Ю. Б., Подборный Е. Е. Засоленность грунтов // Криосфера нефтегазоконденсатных месторождений полуострова Ямал. Том 2. Криосфера Бованенковского нефтегазоконденсатного месторождения / под ред. Ю. Б. Баду, Н. А. Гафарова, Е. Е. Подборного. М.: ООО «Газпром Экспо», 2013. С. 326-336.
  16. Фотиев С. М. Криогенный метаморфизм пород и подземных вод (условия и результаты). Новосибирск: ГЕО, 2009.
  17. Трофимов В. Т., Баду Ю. Б., Кудряшов В. Г., Фирсов Н. Г. Полуостров Ямал (инженерно-геологический очерк). М.: Изд-во Моск. ун-та, 1975.
  18. Толстихин Н. И., Толстихин О. Н. Природные воды Земли и криосфера // Вопросы криологии Земли. М.: Наука, 1976. С. 11-22.
  19. Васильчук Ю. К., Буданцева Н. А. Криопэги // Криосфера нефтегазоконденсатных месторождений полуострова Ямал. Том 1. Криосфера Харасавейского газоконденсатного месторождения / под ред. Ю. К. Васильчука, Г. В. Крылова, Е. Е. Подборного. Тюмень – Санкт-Петербург: Недра, 2006. С. 230-235.
  20. Паренкина О. Л., Подборный Е. Е. Криопэги // Криосфера нефтегазоконденсатных месторождений полуострова Ямал. Том 2. Криосфера Бованенковского нефтегазоконденсатного месторождения / под ред. Ю. Б. Баду, Н. А. Гафарова, Е. Е. Подборного. М.: ООО «Газпром Экспо», 2013. С. 337-353.
  21. Всероссийский НИИ гидрометеорологической информации – Мировой центр данных (ВНИИГМИ-МЦД). meteo.ru/data. Дата обращения 15.12.2023.
  22. Malkova G., Drozdov D., Vasiliev A., Gravis A., Kraev G., Korostelev Y., Nikitin K., Orekhov P., Ponomareva O., Romanovsky V., Sadurtdinov M., Shein A., Skvortsov A., Sudakova M., Tsarev A. Spatial and Temporal Variability of Permafrost in the Western Part of the Russian Arctic // Energies. 2022. Vol. 15(7). 2311. doi: 10.3390/en15072311.
  23. Васильев А. А., Гравис А. Г., Губарьков А. А., Дроздов Д. С., Коростелев Ю. В., Малкова Г. В., Облогов Г. Е., Пономарева О. Е., Садуртдинов М. Р., Стрелецкая И. Д., Стрелецкий Д. А., Устинова Е. В., Широков Р. С. Деградация мерзлоты: результаты многолетнего геокриологического мониторинга в западном секторе российской Арктики // Криосфера Земли. 2020. Т. XXIV. № 2. С. 15-30. doi: 10.21782/KZ1560-7496-2020-2(15-30).
  24. Circumpolar Active Layer Monitoring Network–CALM: Long-Term Observations of the Climate–Active Layer–Permafrost System. gwu.edu/~calm/data/data-links.htm. Дата обращения 15.01.2024.
  25. Песоцкий Д. Г. Программа расчета теплового взаимодействия сооружений с многолетнемерзлыми грунтами QFrost. Свидетельство № 2016614404. Государственный реестр программ для ЭВМ, 22.04.16.
  26. Marion G. M., Mironenko M. V., Roberts M. W. FREZCHEM: A geochemical model for cold aqueous solutions // Computers & Geosciences. 2009. Vol. 36. Iss. 1. Pp. 10-15. doi: 10.1016/j.cageo.2009.06.004.
  27. Волков Н. Г., Комаров И. А., Мироненко М. В., Фотиев С. М. Методики оценки температуры формирования ионно-солевого состава криопэгов // Криосфера Земли. 2005. Т. IХ. № 4. С. 54-61.
  28. Мироненко М. В., Поляков В. Б. Об алгоритме расчета равновесного состава водно-солевых систем на основе модели Питцера // Геохимия. 2009. № 10. С. 1103-1107.
  29. Marion G. M. A molal-based model for strong acid chemistry at low temperatures (200 to 298 K) // Geochimica et Cosmochimica Acta. 2002. Vol. 66. Iss. 14. Pp. 2499-2516. doi: 10.1016/S0016-7037(02)00857-8.
  30. Marion G. M. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system // Geochimica et Cosmochimica Acta. 2001. Vol. 65. Iss. 12. Pp. 1883-1896. doi: 10.1016/S0016-7037(00)00588-3.
  31. Крицук Л. Н. Подземные льды Западной Сибири. М.: Научный мир, 2010.
  32. Стрелецкая И. Д., Лейбман М. О. Криогеохимическая взаимосвязь пластовых льдов, криопэгов и вмещающих их отложений центрального Ямала // Криосфера Земли. 2002. Т. VI. № 3. С. 15-24.
  33. Фотиев С. М. Закономерности формирования ионно-солевого состава природных вод Ямала // Криосфера Земли. 1999. Т. III. № 2. С. 40-65.
  34. Комаров И. А., Волков Н. Г. Методика прогноза температурного и водно-ионного составов засоленных пород и криопэгов // Проблемы строительства на засоленных грунтах. М.: Эпоха, 2007. С. 147-183.
  35. Комаров И. А., Мироненко М. В., Кияшко Н. В. Совершенствование нормативной базы по расчетной оценке теплофизических свойств засоленных пород и криопэгов // Основания, фундаменты и механика грунтов. 2012. № 2. С. 25-30.
  36. Комаров И. А., Волков Н. Г., Мироненко М. В., Фотиев С. М., Стрелецкая И. Д., Ковальчук А. Н. Методики прогноза температурного и водно-ионного режима в засоленных породах и криопэгах (проблемы, решения) // Теория и практика оценки состояния криосферы Земли и прогноз ее изменения. Тюмень, 2006. С. 30-35.
  37. Хрусталев Л. Н., Пармузин С. Ю., Емельянова Л. В. Надежность северной инфраструктуры в условиях меняющегося климата. М.: Университетская книга, 2011.
  38. Балобаев В. Т. Геотермия мерзлой зоны литосферы севера Азии. Новосибирск: Наука, 1991.
  39. СП 121.13330.2012. Аэродромы. М.: Минрегион России, 2012.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».