Vegetation coverage variation in relation to urbanization process in Vietnam
- Autores: Hoang Phan H.1, Dang Truong A.2,3
-
Afiliações:
- Vinh University
- University of Science
- Viet Nam National University
- Edição: Volume 336, Nº 3 (2025)
- Páginas: 112-118
- Seção: Articles
- URL: https://journal-vniispk.ru/2500-1019/article/view/288709
- DOI: https://doi.org/10.18799/24131830/2025/3/4645
- ID: 288709
Citar
Texto integral
Resumo
Relevance. The phenomenon of urbanization, driven by the socio-economic development requirements in various regions globally, is increasingly contributing to reductions in vegetation cover and intensifying ecological and environmental complexities. As a result, monitoring urban expansion has become indispensable for enhancing efficient urban management and facilitating planning regarding ecological and environmental issues.
Aim. To assess the spatial-temporal variations in vegetation cover in Thai Nguyen City, Vietnam over the past two decades under the impacts of urbanization.
Methods. The spatial-temporal changes in vegetation cover were analyzed using the maximum value composite algorithm integrated into the Google Earth Engine platform. The accuracy assessment of the applied classification method yielded high accuracy levels ranging from 91 to 94%.
Results. For 2001–2023, the urban land area increased by 4024 hectares, with an average annual growth rate of 0.78%, rising from 386 hectares in 2001 to 4.410 hectares in 2023. The findings indicate a slight decrease of approximately 773 hectares in vegetation cover during 2001–2010 but a significant increase of up to 2696 hectares during 2010–2023. These findings highlight the potential risks associated with increasing urban land areas within the study area and emphasize the urgent need for appropriate measures to address this issue.
Palavras-chave
Sobre autores
Hai Yen Hoang Phan
Vinh University
Email: hoangphanhaiyen@vinhuni.edu.vn
ORCID ID: 0000-0002-1601-1340
PhD, Associate Professor, Lecturers, College of education
Vietnã, 182, Le Duan Street, Ben Thuy District, Vinh City, Nghe AnAn Dang Truong
University of Science; Viet Nam National University
Autor responsável pela correspondência
Email: dtan@hcmus.edu.vn
ORCID ID: 0000-0003-2237-8031
PhD, Associate Professor, Lecturers
Vietnã, 227, Nguyen Van Cu Street, 5 District, Ho Chi Minh City; Ho Chi Minh CityBibliografia
- Fenta A.A., Yasuda H., Haregeweyn N., Belay A.S., Hadush Z., Gebremedhin M.A., Mekonnen G. The dynamics of urban expansion and land use/land cover changes using remote sensing and spatial metrics: the case of Mekelle City of northern Ethiopia. Int. J. Remote Sens., 2017, vol. 38, pp. 4107–4129.
- Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G. High-resolution global maps of 21st-century forest cover change. Science, 2013, vol. 342, pp. 850–853.
- Križnik B. Transformation of deprived urban areas and social sustainability: a comparative study of urban regeneration and urban redevelopment in Barcelona and Seoul. Urbani izziv., 2018, vol. 29, pp. 83–95.
- Le P.D., Nguyen T.T. Evaluation of climate change-related vulnerability for natural resources and environment in Thai Nguyen province. TNU J. Sci. Technol., 2022, vol. 227, pp. 71–77.
- Seto K.C., Güneralp B., Hutyra L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 2023, vol. 109, pp. 16083–16088.
- Montoya-Tangarife C., De la Barrera F., Salazar A., Inostroza L. Monitoring the effects of land cover change on the supply of ecosystem services in an urban region: a study of Santiago-Valparaíso, Chile. PLoS ONE, 2017, vol. 12, e188117.
- Nguyen T.T.H., Tran T.T., Astarkhanova T.S., Hoang T.T., Vu V.L., Tran D.D., Dau K.T., Hoang A.T., Nguyen N.T., Phung T.D., Vo T.T.H., Vo T.N.K. Potential risks of soil erosion in North-Central Vietnam using remote sensing and GIS. Rev. Bras. Eng. Agríc. Ambient., 2023, vol. 27, pp. 910–916.
- Hu T., Yang J., Li X., Gong P. Mapping urban land use by using Landsat images and open social data. Remote Sens., 2016, vol. 8, pp. 1–18.
- Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ., 2017, vol. 202, pp. 18–27.
- Moore R., Hansen M. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis. Available at: http://adsabs.harvard.edu/abs/2011AGUFMIN43C.02M (accessed 1 October 2020).
- Agarwal S., Nagendra H. Classification of Indian cities using Google Earth Engine. J. Land Use Sci., 2019, vol. 14, pp. 425–439.
- Amani M., Ghorbanian A., Ahmadi S.A., Kakooei M., Moghimi A., Mirmazloumi S.M., Moghaddam S.H.A., Mahdavi S., Ghahremanloo M., Parsian S. Google Earth Engine cloud computing platform for remote sensing big data applications: a comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.I., 2020, vol. 13, pp. 326–350.
- Le T.N., Nguyen D.D., Nguyen D.T. Land cover change assessment in Thai Nguyen Province, Vietnam using GIS and remote sensing techniques. Res. on Crops., 2024, vol. 25, pp. 280–285.
- Ghorbanian A., Kakooei M., Amani M., Mahdavi S., Mohammadzadeh A., Hasanlou M. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. SPRS J. Photogramm. Remote Sens., 2020, vol. 167, pp. 276–288.
- Knut C., Allan A.N., Henning S. Determining the points of change in time series of polarimetric SAR data. IEEE Trans. Geosci. Remote Sens., 2016, vol. 54, pp. 3007–3024.
- Venkatappa M., Sasaki N., Shrestha R.P., Tripathi N.K., Ma H.O. Determination of vegetation thresholds for assessing land use and land use changes in Cambodia using the Google Earth Engine cloud-computing platform. Remote Sens., 2019, vol. 11, pp. 1–30.
- Lee J.S.H., Wich S., Widayati A., Koh L.P. Detecting industrial oil palm plantations on Landsat images with Google Earth Engine. Remote Sens. Appl. Soc. Environ., 2016, vol. 4, pp. 219–224.
- Koskinen J., Leinonen U., Vollrath A., Ortmann A., Lindquist E., d'Annunzio R., Pekkarinen A., Käyhkö N. Participatory mapping of forest plantations with Open Foris and Google Earth Engine. SPRS J. Photogramm. Remote Sens. I, 2019, vol. 148, pp. 63–74.
- Sengupta D., Chen R., Meadows M.E., Choi Y.R., Banerjee A., Zilong X. Mapping trajectories of coastal land reclamation in Nine Deltaic Megacities using Google Earth Engine. Remote Sens., 2019, vol. 11, pp. 1–13.
- Zurqani H.A., Post C.J., Mikhailova E.A., Allen J.S. Mapping urbanization trends in a forested landscape using Google Earth Engine. Remote Sens. Earth Syst. Sci., 2019, vol. 2, pp. 173–182.
- Zurqani H.A., Post C.J., Mikhailova E.A., Schlautman M.A., Sharp J.L. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int. J. Appl. Earth Obs., 2018, vol. 69, pp. 175–185.
- Tamiminia H., Salehi B., Mahdianpari M., Quackenbush L., Adeli S., Brisco B. Google Earth Engine for geo-big data applications: a meta-analysis and systematic review. ISPRS J. Photogramm, 2020, vol. 164, pp. 152–170.
- Morrison J., Higginbottom T.P., Symeonakis E., Jones M.J., Omengo F., Walker S.L., Cain B. Detecting vegetation change in response to confining elephants in forests using MODIS time-series and BFAST. Remote Sens., 2018, vol. 10, 1075.
Arquivos suplementares
