The effect of virus-induced cellular transformation on oncogenesis

Cover Page

Cite item

Full Text

Abstract

Aim – to summarize the scientific data presented in the recent publications on tumor-associated processes induced by viruses. We analyzed 23 international publications devoted to the development and course of tumor-related processes associated with oncogenic viruses.

The tumor-associated mechanisms are based on the processes of cell transformation, which largely depend on the state of telomeres. No less important are viral and cellular oncogenes, molecular circuits that control cell proliferation. Viral oncogenes encode proteins that increase the concentration of telomerase in the infected cells, and thereby increase the number of cell division cycles. The immune homeostasis, maintaining the integrity of body tissues, is regulated by activating and inhibiting metabolic pathways. The errors in the functioning of these signaling pathways caused by oncogenic viruses can lead to cell transformation and oncogenesis. Guaninenucleotide-binding protein RAS and protein kinase AKT are important components of signaling pathways that contribute to the production of D-type cyclins that control the cell cycle and regulate the activity of metabolic enzymes. Cyclin-dependent kinase is an important factor controlling cell cycles, damage and problems with nucleic acid replication, as well as proper assembly of the mitotic spindle. These processes can be disrupted by the transformation caused by oncogenic viruses. In most cases, viral oncogenes undergo additional changes that contribute to their transformation potential. The transformative activity of viral gene products correlates with binding to specific cellular proteins. In the immunopathogenesis of oncogenesis, an important role belongs to the inactivation of tumor suppressors, and the processes of phosphorylation.

About the authors

Aleksandr V. Moskalev

Military Medical Academy named after S.M. Kirov

Author for correspondence.
Email: alexmav195223@yandex.ru
ORCID iD: 0000-0002-3403-3850

PhD, Professor of the Department of microbiology

Russian Federation, Saint-Petersburg

Boris Yu. Gumilevsky

Military Medical Academy named after S.M. Kirov

Email: gumbu@mail.ru

PhD, Professor, Head of the Department of microbiology

Russian Federation, Saint-Petersburg

Aleksandr V. Zhestkov

Samara State Medical University

Email: avzhestkov2015@yandex.ru
ORCID iD: 0000-0002-3960-830X

PhD, Professor, Head of the Department of general and clinical microbiology, immunology and allergology

Russian Federation, Samara

Maksim O. Zolotov

Samara State Medical University

Email: m.o.zolotov@gmail.com
ORCID iD: 0000-0002-4806-050X

PhD, assistant of the Department of general and clinical microbiology, immunology and allergology

Russian Federation, Samara

References

  1. Griffin DE. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity. Viruses. 2016;10(8):282-291. doi: 10.3390/v8100282
  2. Li G. Improvement of enzyme activity and soluble expression of an alkaline protease isolated from oil-polluted mud flat metagenome by random mutagenesis. Enzyme Microb Technol. 2017;106:97-105. doi: 10.1016/j.enzmictec.2017.06.015
  3. Burrell C, Howard C, Murphy F. Fenner and White’s Medical Virology. Academic Press, San Diego, CA, 2016.
  4. Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity. 2019;50(1):37-50. doi: 10.1016/j.immuni.2018.12.027
  5. Wacleche VS, Landay A, Routy JP, Ancuta P. The Th17 Lineage: From Barrier Surfaces Homeostasis to Autoimmunity, Cancer, and HIV-1 Pathogenesis. Viruses. 2017;10(9):303-312. doi: 10.3390/v9100303
  6. Mok YK, Swaminathan K, Zeeshan N. Engineering of serine protease for improved thermostability and catalytic activity using rational design. Int J Biol Macromol. 2019;126:229-237. doi: 10.1016/j.ijbiomac.2018.12.218
  7. Hadjidj R, Badis A, Mechri S, et al. Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A. Int J Biol Macromol. 2018;114:1033-1048. doi: 10.1016/j.ijbiomac.2018.03.167
  8. Thapa RJ, Ingram JP, Ragan KB, et al. DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death. Cell Host Microbe. 2016;20(5):674-681. doi: 10.1016/j.chom.2016.09.014
  9. Nash A, Dalziel R, Fitzgerald J. Mims’ Pathogenesis of Infectious Disease. Academic Press, San Diego, CA, 2015.
  10. Ma Z, Damania B. The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe. 2016;19:150-158. doi: 10.1016/j.chom.2016.01.010
  11. Takata MA, Gonçalves-Carneiro D, Zang TM, et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature. 2017;550(7674):124-127. doi: 10.1038/nature24039
  12. Katze MG, Korth MJ, Law GL, et al. Viral Pathogenesis: From Basics to Systems Biology. Academic Press, San Diego, CA, 2016.
  13. Garcia-Sastre A. Ten strategies of interferon evasion by viruses. Cell Host Microbe. 2017;22:176-184. doi: 10.1016/j.it.2014.05.004
  14. Maillard PV, van der Veen AG, Poirier EZ, et al. Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J. 2019;38(8):e100941. doi: 10.15252/embj.2018100941
  15. Behzadi P, García-Perdomo HA, Karpiński TM. Toll-Like Receptors: General Molecular and Structural Biology. Journal of Immunology Research. 2021;2021:9914854. doi: 10.1155/2021/9914854
  16. Lee S, Liu H, Wilen CB, et al. A secreted viral nonstructural protein deters intestinal norovirus pathogenesis. Cell Host Microbe. 2019:25(6):845-857.e5. doi: 10.1016/j.chom.2019.04.005845-857
  17. Ahmad L, Mostowy S, Sancho-Shimizu S. Autophagy-Virus Interplay: From Cell Biology to Human Disease. Front Cell Dev Biol. 2018;19:155. doi: 10.3389/fcell.2018.00155
  18. Ashraf NM, Krishnagopal A, Hussain A, et al. Engineering of serine protease for improved thermo stability and catalytic activity using rational design. Int J Biol Macromol. 2019;126:229-237. doi: 10.1016/j.ijbiomac.2018
  19. Jeong YJ, Baek SC, Kim H. Cloning and characterization of a novel intracellular serine protease (IspK) from Bacillus megaterium with a potential additive for detergents. Int J Biol Macromol. 2018;108:808-816. doi: 10.1016/j.ijbiomac.2017.10.173
  20. Diner BA, Lum KK, Javitt A, et al. Interactions of the Antiviral Factor Interferon Gamma-Inducible Protein 16. NIFI16 Mediate Immune Signaling and Herpes Simplex Virus-1 Immunosuppression. Mol Cell Proteomics. 2015;14(9):2341-2356. doi: 10.1074/mcp.M114.047068
  21. Hemann EA, Green R, Turnbull JB, et al. Interferon-λ modulates dendritic cells to facilitate T cell immunity ion with influenza A virus. Nat Immunol. 2019;20:1035-1045. doi: 10.1038/s41590-019-0408-z
  22. Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014;35(7):345-351. doi: 10.1016/j.it.2014.05.004
  23. van Gent M, Braem SG, de Jong A, et al. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog. 2014;10(2):e1003960. doi: 10.1371/journal.ppat.1003960

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. The mitogen-activated protein kinase (MAPK) signal transduction pathway

Download (2MB)

Copyright (c) 2023 Moskalev A.V., Gumilevsky B.Y., Zhestkov A.V., Zolotov M.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».