A population study of paracardial fat as a risk factor for cardiovascular diseases (based on the data of the Moscow experiment on the use of computer vision in radiodiagnosis)
- Authors: Vasilev Y.A.1, Goncharova I.V.1, Vladzymyrskii A.V.1, Shulkin I.M.1, Arzamasov K.M.1
-
Affiliations:
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
- Issue: Vol 8, No 4 (2023)
- Pages: 271-280
- Section: Public health, organization and sociology of health
- URL: https://journal-vniispk.ru/2500-1388/article/view/232064
- DOI: https://doi.org/10.35693/2500-1388-2023-8-4-271-280
- ID: 232064
Cite item
Full Text
Abstract
Aim – to study the prevalence of paracardial fat as a risk factor for cardiovascular diseases in Moscow population using an automated analysis of the results of radiological examinations.
Material and methods. The research was designed as descriptive, retrospective epidemiological study. The results of chest computed tomography of 113,408 patients served as the study data. The data was analyzed by AI services in an automated mode for the presence of paracardial fat and calculation of its volume.
Results. The paracardial fat was detected in 66.5% of the examined persons. The proportion of men was 45.7%, women – 54.3% (p<0.001). The volume of paracardial fat fluctuated in the range from 1.0 to 1517.0 ml; the average value was 282.1 ml. The average volume of paracardial fat in men (326.0 ml) was significantly larger than in women (244.7 ml) in each age group. The clinically significant volume of paracardial fat (≥200 ml) was detected in 33,081 individuals (in 64.0% of people having this risk factor). The risk factor was clinically significant in 71.1% of men and in 57.9% of women (p<0.001).
Conclusion. The prevalence of paracardial fat in Moscow population was 5.97 per 1000 individuals. A clinically significant volume of paracardial fat was most often found in both sexes in the elderly (78.7%) and senile age groups (78.2%). Each 5 years of age increased the probability of this risk factor incidence by 1.282 times in general; and the risk of developing its clinical form – by 2.981 times in particular.
Full Text
##article.viewOnOriginalSite##About the authors
Yurii A. Vasilev
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
Email: npcmr@zdrav.mos.ru
ORCID iD: 0000-0002-0208-5218
SPIN-code: 4458-5608
PhD, Director
Russian Federation, 24/1 Petrovka st., Moscow, 127051Inna V. Goncharova
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
Email: GoncharovaIV5@zdrav.mos.ru
ORCID iD: 0000-0003-3662-8601
Head of Department, radiologist
Russian Federation, 24/1 Petrovka st., Moscow, 127051Anton V. Vladzymyrskii
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
Author for correspondence.
Email: VladzimirskijAV@zdrav.mos.ru
ORCID iD: 0000-0002-2990-7736
SPIN-code: 3602-7120
PhD, Professor, Deputy Director for Research
Russian Federation, 24/1 Petrovka st., Moscow, 127051Igor M. Shulkin
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
Email: ShulkinIM@zdrav.mos.ru
ORCID iD: 0000-0002-7613-5273
SPIN-code: 5266-0618
Deputy Director for Prospective Development
Russian Federation, 24/1 Petrovka st., Moscow, 127051Kirill M. Arzamasov
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
Email: ArzamasovKM@zdrav.mos.ru
ORCID iD: 0000-0001-7786-0349
SPIN-code: 3160-8062
PhD, Head of the Department of Medical Informatics, Radiomics and Radiogenomics
Russian Federation, 24/1 Petrovka st., Moscow, 127051References
- Agienko AS, Strokolskaya IL, Heraskov VYu, Artamonova GV. Epidemiology of cardiovascular risk factors and the medical care appealability. Complex Issues of Cardiovascular Diseases. 2022;11(4):79-89. (In Russ.). [Агиенко А.С., Строкольская И.Л., Херасков В.Ю., Артамонова Г.В. Эпидемиология факторов риска болезней системы кровообращения и обращаемость населения за медицинской помощью. Комплексные проблемы сердечно-сосудистых заболеваний. 2022;11(4):79-89]. doi: 10.17802/2306-1278-2022-11-4-79-89
- Ermolaev DO, Ermolaeva YuN. Regional features of deaths from cardiovascular diseases in the context of regional program to reduce cardiovascular mortality. Medical & Pharmaceutical Journal "Pulse". 2021;23(8):21-27. (In Russ.). [Ермолаев Д.О., Ермолаева Ю.Н. Региональные особенности смертности от болезней системы кровообращения в контексте региональной программы по снижению сердечно-сосудистой смертности. Медико-фармацевтический журнал Пульс. 2021;23(8):21-27]. doi: 10.26787/nydha-2686-6838-2021-23-8-21-27
- Zelenina AA, Shalnova SA, Muromtseva GA, et al. Regional deprivation and risk of developing cardiovascular diseases (Framingham Risk Score): data from ESSE-RF. Profilakticheskaya Meditsina. 2023;26(1):49-58. (In Russ.). [Зеленина А.А., Шальнова С.А., Муромцева Г.А., и др. Региональная депривация и риск развития сердечно-сосудистых заболеваний по Фрамингемской шкале: данные ЭССЕ-РФ. Профилактическая медицина. 2023;26(1):49-58]. doi: 10.17116/profmed20232601149
- Kobiakova OS, Deev IA, Kulikov ES, et al. Chronic noncommunicable diseases: combined effects of risk factors. Profilakticheskaya Meditsina. 2019;22(2):45-50. (In Russ.). [Кобякова О.С., Деев И.А., Куликов Е.С., и др. Хронические неинфекционные заболевания: эффекты сочетанного влияния факторов риска. Профилактическая медицина. 2019;22(2):45-50]. doi: 10.17116/profmed20192202145
- Badeinikova KK, Mamedov MN. Early markers of atherosclerosis: predictors of cardiovascular events. Profilakticheskaya Meditsina. 2023;26(1):103-108. (In Russ.). [Бадейникова К.К., Мамедов М.Н. Ранние маркеры атеросклероза: предикторы развития сердечно-сосудистых осложнений. Профилактическая медицина. 2023;26(1):103-108]. doi: 10.17116/profmed202326011103
- Abbas R, Abbas A, Khan TK, et al. Sudden Cardiac Death in Young Individuals: A Current Review of Evaluation, Screening and Prevention. J Clin Med Res. 2023;15(1):1-9. doi: 10.14740/jocmr4823
- Shaddy RE, George AT, Jaecklin T, et al. Systematic Literature Review on the Incidence and Prevalence of Heart Failure in Children and Adolescents. Pediatr Cardiol. 2018;39(3):415-436. doi: 10.1007/s00246-017-1787-2
- Mazur ES, Mazur VV, Bazhenov ND, et al. Epicardial obesity and atrial fibrillation: emphasis on atrial fat depot. Obesity and metabolism. 2020;17(3):316-325. (In Russ.). [Мазур Е.С., Мазур В.В., Баженов Н.Д., и др. Эпикардиальное ожирение и фибрилляция предсердий: акцент на предсердном жировом депо. Ожирение и метаболизм. 2020;17(3):316-325]. doi: 10.14341/omet12614
- Chernina VYu, Morozov SP, Nizovtsova LA, et al. The Role of Quantitative Assessment of Visceral Adipose Tissue of the Heart as a Predictor for Cardiovascular Events. Journal of radiology and nuclear medicine. 2019;100(6):387-394. (In Russ.). [Чернина В.Ю., Морозов С.П., Низовцова Л.А., и др. Роль количественной оценки висцеральной жировой ткани сердца как предиктора развития сердечно-сосудистых событий. Вестник рентгенологии и радиологии. 2019;100(6):387-394]. doi: 10.20862/0042-4676-2019-100-6-387-394
- Demircelik MB, Yilmaz OC, Gurel OM, et al. Epicardial adipose tissue and pericoronary fat thickness measured with 64-multidetector computed tomography: potential predictors of the severity of coronary artery disease. Clinics (Sao Paulo). 2014;69(6):388-92. doi: 10.6061/clinics/2014(06)04
- Farag SI, Mostafa SA, El-Rabbat KE, et al. The relation between pericoronary fat thickness and density quantified by coronary computed tomography angiography with coronary artery disease severity. Indian Heart J. 2023;75(1):53-58. doi: 10.1016/j.ihj.2023.01.006
- Hogea T, Suciu BA, Ivănescu AD, et al. Increased Epicardial Adipose Tissue (EAT), Left Coronary Artery Plaque Morphology, and Valvular Atherosclerosis as Risks Factors for Sudden Cardiac Death from a Forensic Perspective. Diagnostics (Basel). 2023;13(1):142. doi: 10.3390/diagnostics13010142
- Mohammadzadeh M, Mohammadzadeh V, Shakiba M, et al. Assessing the Relation of Epicardial Fat Thickness and Volume, Quantified by 256-Slice Computed Tomography Scan, With Coronary Artery Disease and Cardiovascular Risk Factors. Arch Iran Med. 2018;21(3):95-100.
- Wu FZ, Chou KJ, Huang YL, Wu MT. The relation of location-specific epicardial adipose tissue thickness and obstructive coronary artery disease: systemic review and meta-analysis of observational studies. BMC Cardiovasc Disord. 2014;14:62. doi: 10.1186/1471-2261-14-62
- Kokov AN, Brel NK, Masenko VL, et al. Perivascular adipose tissue and its noninvasive assessement. Kremlin Medicine Journal. 2020;3:115-122. (In Russ.) [Коков А.Н., Брель Н.К., Масенко В.Л., и др. Периваскулярная жировая ткань и методы ее неинвазивной оценки. Кремлевская медицина. Клинический вестник. 2020;3:115-122]. doi: 10.26269/mtn9-bq47
- González N, Moreno-Villegas Z, González-Bris A, et al. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc Diabetol. 2017;16(1):44. doi: 10.1186/s12933-017-0528-4
- Haberka M, Machnik G, Kowalówka A, et al. Epicardial, paracardial, and perivascular fat quantity, gene expressions, and serum cytokines in patients with coronary artery disease and diabetes. Pol Arch Intern Med. 2019;129(11):738-746. doi: 10.20452/pamw.14961
- Iacobellis G, Baroni MG. Cardiovascular risk reduction throughout GLP-1 receptor agonist and SGLT2 inhibitor modulation of epicardial fat. J Endocrinol Invest. 2022;45(3):489-495. doi: 10.1007/s40618-021-01687-1
- Keresztesi AA, Asofie G, Simion MA, Jung H. Correlation between epicardial adipose tissue thickness and the degree of coronary artery atherosclerosis. Turk J Med Sci. 2018;48(1):40-45. doi: 10.3906/sag-1604-58
- Moody AJ, Molina-Wilkins M, Clarke GD, et al. Pioglitazone reduces epicardial fat and improves diastolic function in patients with type 2 diabetes. Diabetes Obes Metab. 2023;25(2):426-434. doi: 10.1111/dom.14885
- El Khoudary SR, Shields KJ, Janssen I, et al. Cardiovascular Fat, Menopause, and Sex Hormones in Women: The SWAN Cardiovascular Fat Ancillary Study. J Clin Endocrinol Metab. 2015;100(9):3304-12. doi: 10.1210/JC.2015-2110
- Hanley C, Matthews KA, Brooks MM, et al. Cardiovascular fat in women at midlife: effects of race, overall adiposity, and central adiposity. The SWAN Cardiovascular Fat Study. Menopause. 2018;25(1):38-45. doi: 10.1097/GME.0000000000000945
- Thanassoulis G, Massaro JM, Hoffmann U, et al. Prevalence, distribution, and risk factor correlates of high pericardial and intrathoracic fat depots in the Framingham heart study. Circ Cardiovasc Imaging. 2010;3(5):559-66. doi: 10.1161/CIRCIMAGING.110.956706
- Nikolaev AE, Blokhin IA, Lbova OA, et al. Three clinically relevant findings in lung cancer screening. Tuberculosis and Lung Diseases. 2019;97(10):37-44. (In Russ.). [Николаев А.Е., Блохин И.А., Лбова О.А., и др. Три клинически значимые находки при скрининге рака легких. Туберкулез и болезни легких. 2019;97(10):37-44]. doi: 10.21292/2075-1230-2019-97-10-37-44
- Nikolaev AE, Chernina VYu, Blokhin IA, et al. The future of computer-aided diagnostics in chest computed tomography. Pirogov Russian Journal of Surgery. 2019;12:91-99. (In Russ.). [Николаев А.Е., Чернина В.Ю., Блохин И.А., и др. Перспективы использования комплексной компьютер-ассистированной диагностики в оценке структур грудной клетки. Хирургия. Журнал им. Н.И. Пирогова. 2019;12:91-99]. doi: 10.17116/hirurgia201912191
- Computer vision in radiation diagnostics: the first stage of the Moscow experiment. Eds. Yu.A. Vasil'ev, A.V. Vladzimirskiy. M., 2022. (In Russ.). [Компьютерное зрение в лучевой диагностике: первый этап Московского эксперимента. Под ред. Ю.А. Васильева, А.В. Владзимирского. М., 2022].
- Spearman JV, Renker M, Schoepf UJ, et al. Prognostic value of epicardial fat volume measurements by computed tomography: a systematic review of the literature. Eur Radiol. 2015;25(11):3372-81. doi: 10.1007/s00330-015-3765-5
- Milanese G, Silva M, Bruno L, et al. Quantification of epicardial fat with cardiac CT angiography and association with cardiovascular risk factors in symptomatic patients: from the ALTER-BIO (Alternative Cardiovascular Bio-Imaging markers) registry. Diagn Interv Radiol. 2019;25(1):35-41. doi: 10.5152/dir.2018.18037
- Tukey JW. Some selected quick and easy methods of statistical analysis. Trans N Y Acad Sci. 1953;16(2):88-97. doi: 10.1111/j.2164-0947.1953.tb01326.x
- Arshi B, Aliahmad HA, Ikram MA, et al. Epicardial Fat Volume, Cardiac Function, and Incident Heart Failure: The Rotterdam Study. J Am Heart Assoc. 2023;12(1):e026197. doi: 10.1161/JAHA.122.026197
- El Khoudary SR, Shields KJ, Janssen I, et al. Postmenopausal Women With Greater Paracardial Fat Have More Coronary Artery Calcification Than Premenopausal Women: The Study of Women's Health Across the Nation (SWAN) Cardiovascular Fat Ancillary Study. J Am Heart Assoc. 2017;6(2):e004545. doi: 10.1161/JAHA.116.004545
- Meloni A, Cadeddu C, Cugusi L, et al. Gender Differences and Cardiometabolic Risk: The Importance of the Risk Factors. Int J Mol Sci. 2023;24(2):1588. doi: 10.3390/ijms24021588
- Kulkarni S, Seneviratne N, Baig MS, Khan AHA. Artificial Intelligence in Medicine: Where Are We Now? Acad Radiol. 2020;27(1):62-70. doi: 10.1016/j.acra.2019.10.001
- Gusev AV, Dobridnyuk SL. Artificial Intelligence in Medicine and Healthcare. Information Society Journal. 2017;(4-5):78-93. (In Russ.). [Гусев А.В., Добриднюк С.Л. Искусственный интеллект в медицине и здравоохранении. Информационное общество. 2017;(4-5):78-93].
- Gusev AV. Prospects for using big data in Russian healthcare. Moskovskaya meditsina. 2022;1(47):26-30. (In Russ.). [Гусев А.В. Перспективы применения больших данных в Российском здравоохранении. Московская медицина. 2022;1(47):26-30].
- Giansanti D. Artificial Intelligence in Public Health: Current Trends and Future Possibilities. Int J Environ Res Public Health. 2022;19(19):11907. doi: 10.3390/ijerph191911907
- Benke K, Benke G. Artificial Intelligence and Big Data in Public Health. Int J Environ Res Public Health. 2018;15(12):2796. doi: 10.3390/ijerph15122796
- Bothra A, Cao Y, Černý J, Arora G. The Epidemiology of Infectious Diseases Meets AI: A Match Made in Heaven. Pathogens. 2023;12(2):317. doi: 10.3390/pathogens12020317
- Choi S, Lee J, Kang MG, et al. Large-scale machine learning of media outlets for understanding public reactions to nation-wide viral infection outbreaks. Methods. 2017;129:50-59. doi: 10.1016/j.ymeth.2017.07.027
- Thiébaut R, Thiessard F. Artificial Intelligence in Public Health and Epidemiology. Yearb Med Inform. 2018;27(1):207-210. doi: 10.1055/s-0038-1667082
- Thiébaut R, Cossin S. Artificial Intelligence for Surveillance in Public Health. Yearb Med Inform. 2019;28(1):232-234. doi: 10.1055/s-0039-1677939
- Lin L, Song Y, Wang Q, et al. Public Attitudes and Factors of COVID-19 Testing Hesitancy in the United Kingdom and China: Comparative Infodemiology Study. JMIR Infodemiology. 2021;1(1):e26895. doi: 10.2196/26895
Supplementary files
