In vitro cell-based Hyperuricemia-hemotest bioassay for cytokine status evaluation in patients with gouty arthritis
- Authors: Volova L.Т.1, Pugachev E.I.1, Starikova T.V.1, Lebedev P.А.1, Shafieva I.А.1, Kuznetsov S.I.1, Gusyakova O.А.1, Svetlova G.N.1, Osina N.K.1
-
Affiliations:
- Samara State Medical University
- Issue: Vol 9, No 1 (2024)
- Pages: 14-21
- Section: Biotechnology
- URL: https://journal-vniispk.ru/2500-1388/article/view/256861
- DOI: https://doi.org/10.35693/SIM546016
- ID: 256861
Cite item
Abstract
Aim – to develop an in vitro method for assessing the activity of the inflammasome under conditions of hyperuricemic stimulation of inflammatory interleukins.
Material and methods. Whole blood cells of donors and patients with hyperuricemia and exacerbation of gouty arthritis diluted with RPMI were cultured in vitro in the presence of different concentrations of uric acid. The production of cytokines in the cell growth media of hematopoietic cells stimulated with uric acid was evaluated using an enzyme-linked immunosorbent assay (ELISA).
Results. By simulating the hyperuricemia in vivo, an in vitro cell-based bioassay was developed to stimulate blood cells of individual donors with uric acid. Using the developed in vitro Hyperuricemia-hemotest bioassay, quantitative differences were found in the production of inflammatory cytokines by the blood cells of potentially healthy donors and patients with hyperuricemia and gouty arthritis.
Conclusion. As a new approach in personalized diagnostics, a hyperuricemic (HU)-hemotest system was developed, which can serve as an in vitro cell model for studying the activation of inflammasome by inflammatory signaling molecules in gouty arthritis.
Full Text
##article.viewOnOriginalSite##About the authors
Larisa Т. Volova
Samara State Medical University
Email: l.t.volova@samsmu.ru
ORCID iD: 0000-0002-8510-3118
PhD, Professor, Director of the RDC “BioTech”
Russian Federation, 171, Аrtsybushevskaya st., Samara, 443001Evgenii I. Pugachev
Samara State Medical University
Email: evgenesius@mail.ru
ORCID iD: 0000-0002-3594-0874
researcher at the RDC “BioTech”
Russian Federation, 171, Аrtsybushevskaya st., Samara, 443001Tatyana V. Starikova
Samara State Medical University
Email: t.v.starikova@samsmu.ru
ORCID iD: 0000-0002-3811-3807
Senior researcher at the RDC “BioTech”
Russian Federation, 171, Аrtsybushevskaya st., Samara, 443001Petr А. Lebedev
Samara State Medical University
Email: p.a.lebedev@samsmu.ru
ORCID iD: 0000-0003-1404-7099
PhD, Professor, Head of the Department of Therapy with a course of functional diagnostics at the Institute of Postgraduate Education
Russian Federation, 171, Аrtsybushevskaya st., Samara, 443001Irina А. Shafieva
Samara State Medical University
Email: i.a.shafieva@samsmu.ru
ORCID iD: 0000-0002-0475-8391
PhD, Head of the Department of Endocrinology and Rheumatology
Russian Federation, 171, Аrtsybushevskaya st., Samara, 443001Sergei I. Kuznetsov
Samara State Medical University
Email: s.i.kuznecov@samsmu.ru
ORCID iD: 0000-0003-4302-8946
PhD, Leading researcher at the RDC “BioTech”
Russian Federation, 171, Аrtsybushevskaya st., Samara, 443001Oksana А. Gusyakova
Samara State Medical University
Email: o.a.gusyakova@samsmu.ru
ORCID iD: 0000-0001-8140-4135
PhD, Head of the Department of Fundamental and Clinical Biochemistry with Laboratory Diagnostics
Russian Federation, 171, Аrtsybushevskaya st., Samara, 443001Galina N. Svetlova
Samara State Medical University
Email: g.n.svetlova@samsmu.ru
ORCID iD: 0000-0001-9400-8609
PhD, Associate professor, Faculty Therapy Department
Russian Federation, 171, Аrtsybushevskaya st., Samara, 443001Natalya K. Osina
Samara State Medical University
Author for correspondence.
Email: n.k.osina@samsmu.ru
ORCID iD: 0000-0002-0444-8174
PhD, Leading researcher at the RDC “BioTech”
Russian Federation, 171, Аrtsybushevskaya st., Samara, 443001References
- Lebedev PA, Garanin AA, Novichkova NL. Pharmacotherapy of gout – modern approaches and prospects. Sovremennaya revmatologiya. 2021;15(4):107-112. (In Russ.). [Лебедев П.А., Гаранин А.А., Новичкова Н.Л. Фармакотерапия подагры – современные подходы и перспективы. Современная ревматология. 2021;15(4):107-112]. https://doi.org/10.14412/1996-7012-2021-4-107-112
- Roumeliotis A, Dounousi E, Eleftheriadis T, et al. Dietary antioxidant supplements and uric acid in chronic kidney disease: a review. Nutrients. 2019;11(8):1911. https://doi.org/10.3390/nu11081911
- Bos MJ, Koudstaal PJ, Hofman A, et al. Uric acid is a risk factor for myocardial infarction and stroke: The Rotterdam Study. Stroke. 2006;37(6):1503-1507. https://doi.org/10.1161/01.STR.0000221716.55088.d4
- Kim K, Kang K, Sheol H, et al. The Association between Serum Uric Acid Levels and 10-Year Cardiovascular Disease Risk in Non-Alcoholic Fatty Liver Disease Patients. Int J Environ Res Public Health. 2022;19(3):1042. https://doi.org/10.3390/ijerph19031042
- Duan X, Ling F. Is uric acid itself a player or a bystander in the pathophysiology of chronic heart failure? Med Hypotheses. 2008;70(3):578-581. https://doi.org/10.1016/j.mehy.2007.06.018
- Yanai H, Adachi H, Hakoshima M, Katsuyama H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int J Mol Sci. 2021;22(17):9221. https://doi.org/10.3390/ijms22179221
- Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension. 2003;42(3):247-252. https://doi.org/10.1161/01.HYP.0000085858.66548.59
- Stamp L, Dalbeth N. Screening for hyperuricaemia and gout: A perspective and research agenda. Nature Reviews Rheumatology. 2014;10(12):752-756. https://doi.org/10.1038/nrrheum.2014.139
- Bhole V, De Vera M, Rahman MM, et al. Epidemiology of gout in women: Fifty-two-year followup of a prospective cohort. Arthritis Rheum. 2010;62(4):1069-1076. https://doi.org/10.1002/art.27338
- Richette P, Doherty M, Pascual E, et al. 2018 updated European League against Rheumatism evidence-based recommendations for the diagnosis of gout. Ann Rheum Dis. 2020;79(1):31-38. https://doi.org/10.1136/annrheumdis-2019-215315
- Shiozawa A, Szabo SM, Bolzani A, et al. Serum uric acid and the risk of incident and recurrent gout: A systematic review. J Rheumatol. 2017;44(3):388-396. https://doi.org/10.3899/jrheum.160452
- Scanu A, Oliviero F, Ramonda R, et al. Cytokine levels in human synovial fluid during the different stages of acute gout: Role of transforming growth factor 1 in the resolution phase. Ann Rheum Dis. 2012;71(4):621-624. https://doi.org/10.1136/annrheumdis-2011-200711
- Jiang X, Li M, Yang Q, et al. Oxidized Low Density Lipoprotein and Inflammation in Gout Patients. Cell Biochem Biophys. 2014;69(1):65-69. https://doi.org/10.1007/s12013-013-9767-5
- Cavalcanti NG, Marques CDL, Lins TU, et al. Cytokine Profile in Gout: Inflammation Driven by IL-6 and IL-18? Immunol Invest. 2016;45(5):383-395. https://doi.org/10.3109/08820139.2016.1153651
- Verma AK, Hossain MS, Ahmed SF, et al. In silico identification of ethoxy phthalimide pyrazole derivatives as IL-17A and IL-18 targeted gouty arthritis agents. J Biomol Struct Dyn. 2022;41(1):1-15. https://doi.org/10.1080/07391102.2022.2071338
- Tran AP, Edelman J. Interleukin-1 inhibition by anakinra in refractory chronic tophaceous gout. Int J Rheum Dis. 2011;14(3):33-37. https://doi.org/10.1111/j.1756-185X.2011.01629.x
- So AK, Martinon F. Inflammation in gout: Mechanisms and therapeutic targets. Nat Rev Rheumatol. 2017;13(11):639-647. https://doi.org/10.1038/nrrheum.2017.155
- Braga TT, Forni MF, Correa-Costa M, et al. Soluble Uric Acid Activates the NLRP3 Inflammasome. Sci Rep. 2017;7:1-14. https://doi.org/10.1038/srep39884
- Spel L, Martinon F. Inflammasomes contributing to inflammation in arthritis. Immunol Rev. 2020;294(1):48-62. https://doi.org/10.1111/imr.12839
- Cavalcanti NG, Bodar E, Netea MG, et al. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1- by mononuclear cells through a caspase 1-mediated process. Ann Rheum Dis. 2016;68(2):273-278. https://doi.org/10.1136/ard.2007.082222
- Malyshev IY, Pihlak AE, Budanova OP. Molecular and Cellular Mechanisms of Inflammation in Gout. Pathogenesis. 2019;17(4):4-13. (In Russ.). [Малышев И.Ю., Пихлак А.Э., Буданова О.П. Молекулярные и клеточные механизмы воспаления при подагре. Патогенез. 2019;17(4):4-13]. https://doi.org/10.25557/2310-0435.2019.04.4-13
- Martinon F, Pétrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237-241. https://doi.org/10.1038/nature04516
- Prencipe G, Bracaglia C, De Benedetti F. Interleukin-18 in pediatric rheumatic diseases. Curr Opin Rheumatol. 2019;31(5):421-427. https://doi.org/10.1097/BOR.0000000000000634
- Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev. 2018;281(1):138-153. https://doi.org/10.1111/imr.12616
- Takahashi M. NLRP3 inflammasome as a novel player in myocardial infarction. Int Heart J. 2014;55(2):101-105. https://doi.org/10.1536/ihj.13-388
- Duewell P, Kono H, Rayner KJ, et al. Activated By Cholesterol Crystals That Form Early in Disease. Nature. 2010;464(7293):1357-1361. https://doi.org/10.1038/nature08938.NLRP3
- Liu W, Yin Y, Zhou Z, et al. OxLDL-induced IL-1beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm Res. 2014;63(1):33-43. https://doi.org/10.1007/s00011-013-0667-3
- Pirozhkov SV, Litvitskiy PF. Inflammasomal diseases. Immunologiya. 2018;39(2):158-165. (In Russ.). [Пирожков С.В., Литвицкий П.Ф. Инфламмасомные болезни. Иммунология. 2018;39(2):158-165]. https://doi.org/10.18821/0206-4952-2018-39-2-3-158-165
- Volova LT, Osina NK, Kuznetsov SI, et al. Donor-specific production of cytokines by blood cells under the influence of immunomodulators: New aspects of a personalized approach in medicine. Science and Innovations in Medicine. 2022;7(4):250-257. (In Russ.). [Волова Л.Т., Осина Н.К., Кузнецов С.И., и др. Донор-специфичная продукция цитокинов клетками крови под влиянием иммуномодуляторов: новые аспекты персонифицированного подхода в медицине. Наука и инновации в медицине. 2022;7(4):250-257]. https://doi.org/10.35693/2500-1388-2022-7-4-250-257
- Damsgaard CT, Lauritzen L, Calder PC, et al. Whole-blood culture is a valid low-cost method to measure monocytic cytokines – A comparison of cytokine production in cultures of human whole-blood, mononuclear cells and monocytes. J Immunol Methods. 2009;340(2):95-101. https://doi.org/10.1016/j.jim.2008.10.005
- Zaitseva GA, Vershinina OA, Matrokhina OI, et al. Cytokine status of blood donors and its components. Fundamental research. 2011;3:61-65. (In Russ.). [Зайцева Г.А., Вершинина О.А., Матрохина О.И., и др. Цитокиновый статус доноров крови и ее компонентов. Фундаментальные исследования. 2011;3: 61-65].
- Miyazawa H, Wada T. Immune-mediated inflammatory diseases with chronic excess of serum interleukin-18. Front Immunol. 2022;13:1-14. https://doi.org/10.3389/fimmu.2022.930141
Supplementary files
