Osteoprotegerin gene polymorphisms in postmenopausal women with knee osteoarthritis

Cover Page

Cite item

Abstract

Aim – to investigate the associations of rs3134069, rs4355801 and rs3102735 polymorphisms in the TNFRSF11B gene with knee osteoarthritis in postmenopausal women.

Material and methods. 483 postmenopausal women were examined, including 157 patients with knee osteoarthritis. The remaining 326 women had no signs of joint disease and formed the control group. All examined women were tested using real-time polymerase chain reaction for single nucleotide polymorphisms rs3134069, rs4355801 and rs3102735 in the TNFRSF11B gene.

Results. It was found that genotypes distribution of polymorphisms rs3134069, rs4355801 and rs3102735 in the TNFRSF11B gene in the total group of examined women (n = 483) corresponded to the Hardy – Weinberg law (p > 0.05). The analysis of the polymorphic variants’ frequency in the TNFRSF11B gene revealed an increased frequency of AC or CC genotypes of rs3134069 polymorphism in patients with knee osteoarthritis (OR = 1.91; 95% CI: 1.10–3.32; p = 0.030). Also, the allele C frequency of the above-mentioned polymorphism was increased among patients with osteoarthritis (OR = 1.78; 95% CI: 1.06–2.99; p = 0.040). No association with knee osteoarthritis was found for two other studied polymorphisms in the TNFRSF11B gene – rs4355801 and rs3102735 (p > 0.05).

Conclusion. The increased frequency of genotypes AC or CC registration, as well as allele C of rs3134069 polymorphism in the TNFRSF11B gene in postmenopausal women with knee osteoarthritis indicates the important role of TNFRSF11B gene mutations in the osteoarthritis development and progression. Further research in this area is of great interest both for a deeper understanding of the disease pathogenesis and for the development of personalized approach in the prevention and treatment of knee osteoarthritis in postmenopausal women.

About the authors

Grigorii A. Ignatenko

M. Gorky Donetsk National Medical University

Email: prop-vnutr-medicina@dnmu.ru
ORCID iD: 0000-0003-3611-1186

PhD, Professor, corresponding member of the NAMS of Ukraine, Head of the Department of Propaedeutics of Internal Diseases

Russian Federation, Donetsk

Natalya A. Reznichenko

Medical Academy named after S.I. Georgievsky of Vernadsky Crimean Federal University

Email: professorreznichenko@mail.ru
ORCID iD: 0000-0003-3396-1046

PhD, Professor of the Department of Obstetrics and Gynecology No. 1

Russian Federation, Simferopol

Pavel N. Fedulichev

Medical Academy named after S.I. Georgievsky of Vernadsky Crimean Federal University

Email: pfedulichev@yandex.ru
ORCID iD: 0000-0002-5492-0270

PhD, Associate professor of the Department of Topographic Anatomy

Russian Federation, Simferopol

Eduard A. Maylyan

M. Gorky Donetsk National Medical University

Author for correspondence.
Email: maylyan.ea@yandex.com
ORCID iD: 0000-0003-2845-7750

PhD, Professor, Head of the Department of Microbiology, Virology, Immunology and Allergology

Russian Federation, Donetsk

References

  1. Aleshkevich AI, Martusevich NA, Bondar TV. Risk factors and features of clinical manifestations of early radiological stages of osteoarthritis of the knee joint. Medical Journal. 2022;2:41-44. (In Russ.). [Алешкевич А.И., Мартусевич Н.А., Бондарь Т.В. Факторы риска и особенности клинических проявлений ранних рентгенологических стадий остеоартроза коленного сустава. Медицинский журнал. 2022;2:41-44]. https://doi.org/10.51922/1818-426X.2022.2.41
  2. Zborovskaya IA, Mozgovaya EE, Bedina SA, et al. Osteoarthritis – a modern view of treatment. Lekarstvennyj vestnik. 2019;13(4):7-15. (In Russ.). [Зборовская И.А., Мозговая Е.Э., Бедина С.А., и др. Остеоартроз – современный взгляд на лечение. Лекарственный вестник. 2019;13(4):7-15].
  3. Kabalyk MA. Prevalence of osteoarthritis in Russia: regional aspects of trends in statistical parameters over 2011-2016. Rheumatology Science and Practice. 2018;56(4):416-422. (In Russ.). [Кабалык М.А. Распространенность остеоартрита в России: региональные аспекты динамики статистических показателей за 2011–2016 гг. Научно-практическая ревматология. 2018;56(4):416-422]. https://doi.org/10.14412/1995-4484-2018-416-422
  4. Apostu D, Lucaciu O, Mester A, et al. Systemic drugs with impact on osteoarthritis. Drug Metab Rev. 2019;51(4):498-523. https://doi.org/10.1080/03602532.2019.1687511
  5. Grässel S, Zaucke F, Madry H. Osteoarthritis: Novel Molecular Mechanisms Increase Our Understanding of the Disease Pathology. J Clin Med. 2021;10(9):1938. https://doi.org/10.3390/jcm10091938
  6. Jiang W, Chen H, Lin Y, et al. Mechanical stress abnormalities promote chondrocyte senescence – The pathogenesis of knee osteoarthritis. Biomed Pharmacother. 2023;167:115552. https://doi.org/10.1016/j.biopha.2023.115552
  7. Boer CG, Hatzikotoulas K, Southam L, et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell. 2021;184(18):4784-4818.e17. https://doi.org/10.1016/j.cell.2021.07.038
  8. Hulin-Curtis SL, Bidwell JL, Perry MJ. Tumour necrosis factor receptor superfamily member 11B polymorphisms and association with knee osteoarthritis in women. Int J Immunogenet. 2012;39(3):207-9. https://doi.org/10.1111/j.1744-313X.2012.01083.x
  9. Qi Y, An F, Wang J, et al. Association of OPG gene polymorphisms with the risk of knee osteoarthritis among Chinese people. Mol Genet Genomic Med. 2019;7(6):e662. https://doi.org/10.1002/mgg3.662
  10. Valdes AM, Hart DJ, Jones KA, et al. Association study of candidate genes for the prevalence and progression of knee osteoarthritis. Arthritis & Rheumatism. 2004;50(8):2497-2507. https://doi.org/10.1002/art.20443
  11. Valdes AM, Van OM, Hart DJ, et al. Reproducible genetic associations between candidate genes and clinical knee osteoarthritis in men and women. Arthritis & Rheumatism. 2006;54(2):533-539. https://doi.org/10.1002/art.21621
  12. Riggs KC, Sankar U. Inflammatory mechanisms in post-traumatic osteoarthritis: a role for CaMKK2. Immunometabolism (Cobham). 2023;5(4):e00031. https://doi.org/10.1097/IN9.0000000000000031
  13. Geng R, Li J, Yu C, et al. Knee osteoarthritis: Current status and research progress in treatment (Review). Exp Ther Med. 2023;26(4):481. https://doi.org/10.3892/etm.2023.12180
  14. Ignatenko GA, Mailyan EA, Nemsadze IG, et al. The role of cytokines in bone tissue remodeling in norm and pathology. Tavricheskiy mediko-biologicheskiy vestnik. 2020;1:133-139. (In Russ.). [Игнатенко Г.А., Майлян Э.А., Немсадзе И.Г., и др. Роль цитокинов в ремоделировании костной ткани в норме и патологии. Таврический медико-биологический вестник. 2020;1:133-139]. https://doi.org/10.37279/2070-8092-2020-23-1-133-139
  15. Ignatenko GA, Nemsadze IG, Mirovich ED, et al. The role of cytokines in bone remodeling and pathogenesis of postmenopausal osteoporosis. Medical Herald of the South of Russia. 2020;11(2):6-18. (In Russ.). [Игнатенко Г.А., Немсадзе И.Г., Мирович Е.Д., и др. Роль цитокинов в ремоделировании костной ткани и патогенезе постменопаузального остеопороза. Медицинский вестник Юга России. 2020;11(2):6-18]. https://doi.org/10.21886/2219-8075-2020-11-2
  16. Kovács B, Vajda E, Nagy EE. Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int J Mol Sci. 2019;20(18):4653. https://doi.org/10.3390/ijms20184653
  17. Kwan Tat S, Amiable N, Pelletier JP, et al. Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (Oxford). 2009;48(12):1482-90. https://doi.org/10.1093/rheumatology/kep300
  18. Sagar DR, Ashraf S, Xu L, et al. Osteoprotegerin reduces the development of pain behaviour and joint pathology in a model of osteoarthritis. Ann Rheum Dis. 2014;73(8):1558-65. https://doi.org/10.1136/annrheumdis-2013-203260
  19. Kadri A, Ea HK, Bazille C, et al. Osteoprotegerin inhibits cartilage degradation through an effect on trabecular bone in murine experimental osteoarthritis. Arthritis Rheum. 2008;58(8):2379-86. https://doi.org/10.1002/art.23638
  20. Naik S, Sahu S, Bandyopadhyay D, Tripathy S. Serum levels of osteoprotegerin, RANK-L & vitamin D in different stages of osteoarthritis of the knee. Indian J Med Res. 2021;154(3):491-496. https://doi.org/10.4103/ijmr.IJMR_873_19
  21. Rodríguez Ruiz A, Tuerlings M, Das A, et al. The role of TNFRSF11B in development of osteoarthritic cartilage. Rheumatology (Oxford). 2022;61(2):856-864. https://doi.org/10.1093/rheumatology/keab440

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Ignatenko G.A., Reznichenko N.A., Федуличев P.Н., Maylyan E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».