The effect of cinnamic acid derivative on the activity of mitochondrial enzymes in brain tissue under conditions of experimental Parkinson's disease
- Authors: Pozdnyakov D.I.1,2
-
Affiliations:
- Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
- Pyatigorsk State Research Institute of Balneology
- Issue: Vol 9, No 4 (2024)
- Pages: 317-322
- Section: Pharmacology
- URL: https://journal-vniispk.ru/2500-1388/article/view/277332
- DOI: https://doi.org/10.35693/SIM630264
- ID: 277332
Cite item
Full Text
Abstract
Aim – to evaluate the effect of cinnamic acid derivative on changes in mitochondrial enzymes activity in rats brain tissue under conditions of experimental Parkinson's disease.
Material and methods. Parkinson's disease was modeled in male Wistar rats by direct injection of rotenone solution (5 mg/ml) into the striatum. The analyzed compound 4-hydroxy-3,5-di-tretbutyl cinnamic acid and the reference ethylmethylhydroxypyridine succinate were administered orally in equivalent doses (100 mg/kg) for 30 days from the moment of pathology modeling. Next, a brain supernatant was obtained by differential centrifugation, in which changes in the activity of enzymes: citrate synthase, succinate dehydrogenase, cytochrome c oxidase and aconitase were evaluated. The obtained results were processed statistically. During the analysis, the StatPlus 7.0 application software suite was used.
Results. During the study, it was found that the administration of 4-hydroxy-3,5-di-tretbutyl cinnamic acid to rats increased the activity of citrate synthase, succinate dehydrogenase, cytochrome c oxidase and aconitase relative to untreated animals by 109.7% (p<0.05); 53.6% (p<0.05); 65.0% (p<0.05) and 63.1% (p<0.05), respectively, whereas against the background of the use of the reference, the activity of these enzymes increased by 56.3% (p<0.05); 57.7% (p<0.05); 71.7% (p<0.05) and 49.1% (p<0.05), respectively. At the same time, the activity of citrate synthase in animals treated by 4-hydroxy-3,5-di-tretbutyl cinnamic acid was higher than that in rats treated by the reference by 34.2% (p<0.05).
Conclusions. The study showed that the course administration of 4-hydroxy-3,5-di-tretbutyl cinnamic acid to animals with experimental Parkinson's disease is accompanied by an increase in the activity of mitochondrial enzymes, which may reflect the significant effect of this compound on the processes of mitochondrial biogenesis, mitophagy and generation of mitochondrial reactive oxygen species.
Full Text
##article.viewOnOriginalSite##About the authors
Dmitry I. Pozdnyakov
Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University; Pyatigorsk State Research Institute of Balneology
Author for correspondence.
Email: pozdniackow.dmitry@yandex.ru
ORCID iD: 0000-0002-5595-8182
PhD, Associate professor, Head of the Department of Pharmacology with a course in Clinical Pharmacology; leading researcher
Russian Federation, Pyatigorsk; PyatigorskReferences
- Tysnes OB, Storstein A. Epidemiology of Parkinson's disease. J Neural Transm (Vienna). 2017;124(8):901-905. DOI: https://doi.org/10.1007/s00702-017-1686-y
- Alqahtani T, Deore SL, Kide AA, et al. Mitochondrial dysfunction and oxidative stress in Alzheimer's disease, and Parkinson's disease, Huntington's disease and Amyotrophic Lateral Sclerosis -An updated review. Mitochondrion. 2023;71:83-92. DOI: https://doi.org/10.1016/j.mito.2023.05.007
- Eldeeb MA, Thomas RA, Ragheb MA, et al. Mitochondrial quality control in health and in Parkinson's disease. Physiol Rev. 2022;102(4):1721-1755. DOI: https://doi.org/10.1152/physrev.00041.2021
- Blagov A, Postnov A, Sukhorukov V, et al. Significance of Mitochondrial Dysfunction in the Pathogenesis of Parkinson's Disease. Front Biosci (Landmark Ed). 2024;29(1):36. DOI: https://doi.org/10.31083/j.fbl2901036
- Wright R. Mitochondrial dysfunction and Parkinson's disease. Nat Neurosci. 2022;25(1):2. DOI: https://doi.org/10.1038/s41593-021-00989-0
- González-Rodríguez P, Zampese E, Stout KA, et al. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature. 2021;599(7886):650-656. DOI: https://doi.org/10.1038/s41586-021-04059-0
- Salamon A, Zádori D, Szpisjak L, et al. Neuroprotection in Parkinson's disease: facts and hopes. J Neural Transm (Vienna). 2020;127(5):821-829. DOI: https://doi.org/10.1007/s00702-019-02115-8
- Pozdnyakov DI, Zolotykh DS, Larsky MV. The effect of cinnamic acid derivative on changes in the activity of mitochondrial respiratory chain complexes under conditions of experimental cerebral ischemia. Issues of biological, medical and pharmaceutical chemistry. 2020;23(6):50-54. [Поздняков Д.И., Золотых Д.С., Ларский М.В. Влияние производного коричной кислоты на изменение активности комплексов митохондриальной дыхательной цепи в условиях экспериментальной ишемии головного мозга. Вопросы биологической, медицинской и фармацевтической химии. 2020;23(6):50-54]. DOI: https://doi.org/10.29296/25877313-2020-06-09
- Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7): p.e3000410. DOI: https://doi.org/10.1371/journal.pbio.3000410
- Chen CN, Wang MH, Soung HS, et al. L-Theanine Ameliorated Rotenone-Induced Parkinsonism-like Symptoms in Rats. Neurotox Res. 2022;40(1):241-258. DOI: https://doi.org/10.1007/s12640-021-00451-w
- Bykov YuN, Bender TB. Medicinal methods of treatment of patients with Parkinson's disease. Bulletin of the East Siberian Scientific Center of the Siberian Branch of the Russian Academy of Medical Sciences. 2016;3-1(109):65-71. (In Russ.). [Быков Ю.Н., Бендер Т.Б. Медикаментозные методы лечения пациентов с болезнью Паркинсона. Бюллетень Восточно-Сибирского научного центра Сибирского отделения Российской академии медицинских наук. 2016;3-1(109):65-71].
- Kirova YuI, Germanova EL. New aspects of the energotropic action of mexidol. Pathological physiology and experimental therapy. 2018;62(4):36-40. [Кирова Ю.И., Германова Э.Л. Новые аспекты энерготропного действия мексидола. Патологическая физиология и экспериментальная терапия. 2018;62(4):36-40]. DOI: https://doi.org/10.25557/0031-2991.2018.04.36-40
- Clark EH, Vázquez de la Torre A, Hoshikawa T, Briston T. Targeting mitophagy in Parkinson's disease. J Biol Chem. 2021;296:100209. DOI: https://doi.org/10.1074/jbc.REV120.014294
- Hicks AR, Reynolds RH, O'Callaghan B, et al. The non-specific lethal complex regulates genes and pathways genetically linked to Parkinson's disease. Brain. 2023;146(12):4974-4987. DOI: https://doi.org/10.1093/brain/awad246
- Picca A, Faitg J, Auwerx J, et al. Mitophagy in human health, ageing and disease. Nat Metab. 2023;5(12):2047-2061. DOI: https://doi.org/10.1038/s42255-023-00930-8
- Ay M, Luo J, Langley M, et al. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease. J Neurochem. 2017;141(5):766-782. DOI: https://doi.org/10.1111/jnc.14033
- Luo T, Jia X, Feng WD, et al. Bergapten inhibits NLRP3 inflammasome activation and pyroptosis via promoting mitophagy. Acta Pharmacol Sin. 2023;44(9):1867-1878. DOI: https://doi.org/10.1038/s41401-023-01094-7
- Jin X, Zhu L, Lu S, et al. Baicalin ameliorates CUMS-induced depression-like behaviors through activating AMPK/PGC-1α pathway and enhancing NIX-mediated mitophagy in mice. Eur J Pharmacol. 2023;938:175435. DOI: https://doi.org/10.1016/j.ejphar.2022.175435
- Chen Y, Cai GH, Xia B, et al. Mitochondrial aconitase controls adipogenesis through mediation of cellular ATP production. FASEB J. 2020;34(5):6688-6702. DOI: https://doi.org/10.1096/fj.201903224RR
Supplementary files
