Morphological evaluation of decellularized lyophilized amniotic membrane

Cover Page

Cite item

Abstract

Aim – to study the morphological structure of lyophilized amniotic membrane preliminarily subjected to physical decellularization.

Material and methods. An experimental study of the preservation of the anatomical structure of lyophilized amniotic membrane was performed on four groups of amniotic membrane fragments. Group 1: AM impregnated with glycerin and dried over silica gel; Group 2: AM impregnated with glycerin, treated ultrasonically and lyophilized; Group 3: AM treated ultrasonically and lyophilized; Group 4: native AM without preservation. The biomaterial was studied using light microscopy and scanning electron microscopy.

Results. Physical methods of influencing biological tissue have an expected effect on cell viability and allow obtaining a completely decellularized amniotic membrane. Additional treatment with glycerol before physical action on biological tissue for the purpose of decellularization does not have a significant effect on the preservation of cellular structures. It should only be noted that in the amniotic membrane impregnated with glycerol, more fragments of epithelial cell membranes are preserved and the basement membrane is more preserved.

Conclusion. The decellularization method developed by us using physical methods does not introduce any chemicals into the processed biomaterial that can have an unpredictable effect on regenerating tissues. Preservation of the amniotic membrane by lyophilization allows obtaining a morphologically integral, elastic and durable biomaterial.

About the authors

Kseniya E. Kuchuk

Samara Regional Clinical Ophthalmological Hospital named after T.I. Eroshevsky

Email: kuchukke@rambler.ru
ORCID iD: 0009-0003-2986-5913

MD, ophthalmologist, head of the tissue procurement and preservation department

Russian Federation, Samara

Larisa T. Volova

Samara State Medical University

Email: l.t.volova@samsmu.ru
ORCID iD: 0000-0002-8510-3118

MD, Dr. Sci. (Medicine), Professor, Director of the “BioTech” Research Institute

Russian Federation, Samara

Iosif V. Novikov

Samara State Medical University

Email: р111аа@yandex.ru
ORCID iD: 0000-0002-6855-6828

MD, Cand. Sci. (Medicine), assistant of the Department of Traumatology, Orthopedics and Extreme Surgery named after Academician of the Russian Academy of Sciences A.F. Krasnov

Russian Federation, Samara

Evgenii S. Milyudin

Samara State Medical University

Author for correspondence.
Email: e.s.milyudin@samsmu.ru
ORCID iD: 0000-0001-7610-7523

MD, Dr. Sci. (Medicine), Associate professor, Department of Operative Surgery and Clinical Anatomy with a course in Medical Information Technologies

Russian Federation, Samara

References

  1. Meller D, Pires RT, Mack RJ, et al. Amniotic membrane transplantation for acute chemical or thermal burns. Ophthalmology. 2000;107(5):980-9; discussion 990. doi: 10.1016/s0161-6420(00)00024-5
  2. Niknejad H, Peirovi H, Jorjani M, et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88-99. doi: 10.22203/ecm.v015a07
  3. Pollard SM, Aye NN, Symonds EM. Scanning electron microscope appearances of normal human amnion and umbilical cord at term. Br J Obstet Gynaecol. 1976;83(6):470-7. doi: 10.1111/j.1471-0528.1976.tb00868.x
  4. Adds PJ, Hunt CJ, Dart JK. Amniotic membrane grafts, “fresh” or frozen? A clinical and in vitro comparison. Brit J Ophthalmol. 2001;85(8):905-7. doi: 10.1136/bjo.85.8.905
  5. Aleksandrova OI, Gavrilyuk IO, Mashel TV, et al. On preparation of amniotic membrane as a scaffold for cultivated cells to create corneal bioengineering constructs. Saratov Journal of Medical Scientific Research. 2019;15(2):409-413. [Александрова О.И., Гаврилюк И.О., Машель Т.В., и др. К вопросу о подготовке амниотической мембраны в качестве скаффолда для культивируемых клеток при создании биоинженерных конструкций роговицы. Саратовский научно-медицинский журнал. 2019;15(2):409-413]. URL: https://ofmntk.ru/files/upload/2019215.pdf
  6. Li H, Niederkorn JY, Neelam S, et al. Immunosuppressive Factors Secreted by Human Amniotic Epithelial Cells. Invest Ophthalmol Vis Sci. 2005;46(3):900-907. doi: 10.1167/iovs.04-0495.
  7. Koizumi NJ, Inatomi TJ, Sotozono CJ, et al. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20(3):173-7. PMID: 10694891
  8. Riau AK, Beuerman RW, Lim LS, Mehta JS. Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials. 2010;31(2):216-25. doi: 10.1016/j.biomaterials.2009.09.034
  9. Adds PJ, Hunt CJ, Dart JK. Amniotic membrane grafts, “fresh” or frozen? A clinical and in vitro comparison. Br J Ophthalmol. 2001;85(8):905-7. doi: 10.1136/bjo.85.8.905
  10. Milyudin ES. Technology of preservation of the amniotic membrane by drying with silica gel. Technologies of living systems. 2006;3(3):44-49. (In Russ.). [Милюдин Е.С. Технология консервации амниотической мембраны путем высушивания над силикагелем. Технологии живых систем. 2006;3(3):44-49].
  11. Milyudin ES, Kuchuk KE, Bratko OV. Preserved amniotic membrane in a small tissue-engineering complex of the anterior corneal epithelium. Perm Medical Journal. 2016;33(5):47-54. [Милюдин Е.С., Кучук К.Е., Братко О.В. Консервированная амниотическая мембрана в структуре тканеинженерного комплекса переднего эпителиального слоя роговицы. Пермский медицинский журнал. 2016;33(5):47-54]. doi: 10.17816/pmj33547-53
  12. Kim JC, Tseng SCG. Transplantation of preserved human amniotic membrane for surface reconstruction in severly damaged rabbit corneas. Cornea. 1995;14:473-484. PMID: 8536460
  13. Koizumi N, Fullwood NJ, Bairaktaris G, et al. Quantock Cultivation of Corneal Epithelial Cells on Intact and Denuded Human Amniotic Membrane. Investigative Ophthalmology & Visual Science. 2000;41:2506-2513. PMID: 10937561
  14. Lin CH, Hsia K, Su CK, et al. Sonication-Assisted Method for Decellularization of Human Umbilical Artery for Small-Caliber Vascular Tissue Engineering. Polymers (Basel). 2021;13(11):1699. doi: 10.3390/polym13111699
  15. Melkonyan KI, Rusinova TV, Kozmai YaA, Asyakina AS. Assessment of Nuclear Material Elimination by Different Methods of Dermis Decellularization. Journal Biomed. 2021;17(3E):59-63. [Мелконян К.И., Русинова Т.В., Козмай Я.А., Асякина А.С. Оценка элиминации ядерного материала при различных методах децеллюляризации дермы. Биомедицина. 2021;17(3E):59-63]. doi: 10.33647/2713-0428-17-3E-59-63
  16. Murphy SV, Skardal A, Nelson RAJr, et al. Amnion membrane hydrogel and amnion membrane powder accelerate wound healing in a full thickness porcine skin wound model. Stem Cells Transl Med. 2020;9(1):80-92. doi: 10.1002/sctm.19-0101
  17. Startseva OI, Sinelnikov ME, Babayeva YuV, Trushenkova VV. Decellularization of organs and tissues. Pirogov Russian Journal of Surgery. 2019;(8):59-62. [Старцева О.И., Синельников М.Е., Бабаева Ю.В., Трущенкова В.В. Децеллюляризация органов и тканей. Хирургия. Журнал им. Н.И. Пирогова. 2019;(8):59-62]. doi: 10.17116/hirurgia201908159
  18. Tovpeko DV, Kondratenko AA, Astakhov AP, et al. Decellularization of organs and tissues as a key stage in the creation of biocompatible material. Bulletin of the Military Innovation Technopolis “Era”. 2023;4(4):342-346. [Товпеко Д.В., Кондратенко А.А., Астахов А.П., и др. Децеллюляризация органов и тканей как ключевой этап создания биосовместимого материала. Вестник Военного инновационного технополиса «Эра». 2023;4(4):342-346]. doi: 10.56304/S2782375X23040150 EDN: IHEIWC

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Native amniotic membrane preparation. Stained with picrofuchsin. Magnification x400.

Download (1MB)
3. Figure 2. Amniotic membrane preparation preserved by drying over silica gel after preliminary treatment with glycerol. Stained with hematoxylin and eosin. Magnification x400.

Download (857KB)
4. Figure 3. Electron microscopic image of the amniotic membrane in a scanning electron microscope. Epithelial surface of the amniotic membrane preparation dried with silica and pre-impregnated with glycerol. Magnification x1000.

Download (1MB)
5. Figure 4. Electron microscopic image of the amniotic membrane in a scanning electron microscope. Spongy layer of the amniotic membrane preparation dried with silica and preliminary impregnation with glycerin. Magnification x400.

Download (1MB)
6. Figure 5. Amniotic membrane preparation preserved by lyophilization after preliminary treatment with glycerol. Stained with hematoxylin and eosin. Magnification x400.

Download (817KB)
7. Figure 6. Electron microscopic image of amniotic membrane in a scanning electron microscope. Epithelial surface of a lyophilized amniotic membrane preparation with preliminary impregnation with glycerol. Magnification x50.

Download (1MB)
8. Figure 7. Electron microscopic image of amniotic membrane in a scanning electron microscope. Spongy layer of a lyophilized amniotic membrane preparation with preliminary impregnation with glycerol. Magnification x400.

Download (1MB)
9. Figure 8. Amniotic membrane preparation preserved by lyophilization without glycerol treatment. Hematoxylin and eosin staining. Magnification x400.

Download (838KB)
10. Figure 9. Electron microscopic image of amniotic membrane in a scanning electron microscope. Epithelial surface of a lyophilized amniotic membrane preparation without preliminary impregnation with glycerol. Magnification x400.

Download (1MB)
11. Figure 10. Electron microscopic image of amniotic membrane in a scanning electron microscope. Spongy layer of the preparation of lyophilized amniotic membrane without preliminary impregnation with glycerol. Magnification x1000.

Download (1MB)

Copyright (c) 2025 Kuchuk K.E., Volova L.T., Novikov I.V., Milyudin E.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».