Modeling of stochastic brain function in artificial intelligence

Cover Page

Cite item

Full Text

Abstract

Objectives –research of stochastic brain function in respect to creation of artificial intelligence.

Material and methods. Mathematical modeling principles were used for simulation of brain functioning in a stochastic mode.

Results. Two types of brain activity were considered: determinated type, usually modeled using the perceptron, and stochastic type. It is shown, that stochastic brain function modeling is the necessary condition for AI to become capable of creativity, generation of new knowledge. Mathematical modeling of a neural network of the cerebral cortex, consisting of the set of the cyclic neuronal circuits (memory units), was performed for the stochastic mode of brain functioning. Models of "two-dimensional" and "one-dimensional" brain were analyzed. The pattern of excitation in memory units was calculated in the "one-dimensional" brain model.

Conclusion. Relying on the knowledge of the stochastic mode of brain function, a way of creation of AI can be offered. á-rhythm of a patient is a recommended focus of the therapist's attention in diagnostics and treatment of brain disorders. It was noted, that the alpha wave amplitude and frequency could indicate the cognitive, creative and intuitive abilities of a person.

About the authors

Andrei N. Volobuev

Samara State Medical University

Author for correspondence.
Email: volobuev47@yandex.ru
ORCID iD: 0000-0001-8624-6981

PhD, Professor, Head of the Department of medical physics, mathematics and informatics.

Russian Federation, Samara

Vasiliy F. Pyatin

Samara State Medical University

Email: volobuev47@yandex.ru
ORCID iD: 0000-0001-8777-3097

PhD, Professor, Head of the Department of physiology with the course of life safety and disaster medicine

Russian Federation, Samara

Natalya P. Romanchuk

Samara State Medical University

Email: volobuev47@yandex.ru
ORCID iD: 0000-0003-3522-6803

teaching assistant, Department of physiology with the course of life safety and disaster medicine.

Russian Federation, Samara

Petr I. Romanchuk

Samara Clinical Geriatric Hospital

Email: volobuev47@yandex.ru
ORCID iD: 0000-0002-0603-1014

PhD, Deputy Chief Physician in Samara Clinical Geriatric Hospital.

Russian Federation, Samara

Svetlana V. Bulgakova

Samara State Medical University

Email: volobuev47@yandex.ru
ORCID iD: 0000-0003-0027-1786

PhD, Head of the Department of geriatrics and geriatric endocrinology.

Russian Federation, Samara

References

  1. Guyton AC, Hall JE. Textbook of medical physiology. Elsevier Inc., New York, USA, 2006. [Гайтон А.К., Холл Дж.Э. Медицинская физиология. Пер. с англ. М.: Логосфера, 2008:621,807,817].
  2. Volobuev AN, Romanchuk PI, Bulgakova SV. Alzheimer’s disease as the cerebral cortex disorder. Science & Innovations in Medicine. 2019;4(2):16–20. (In Russ.) [Волобуев А.Н., Романчук П.И., Булгакова С.В. Болезнь Альцгеймера – заболевание коры головного мозга. Наука и инновации в медицине. 2019;4(2):16–20]. doi: 10.35693/2500-1388-2019-4-2-16-20
  3. Rosenblatt F. The perceptron, a probabilistic model for information storage and organization in the brain. Psych Rev. 1958;65:386–408.
  4. Grechko LG, Sugakov VI, Tomasevich OF, Fedorchenko AM. Problems in theoretical physics. M., 1972. (In Russ.) [Гречко Л.Г., Сугаков В.И., Томасевич О.Ф., Федорченко А.М. Сборник задач по теоретической физике. М., 1972].
  5. Levitov LS, Shitov AV. Green's function. Problems and solutions. M.: FIZMATLIT, 2003. (In Russ.) [Левитов Л.С., Шитов А.В. Функции Грина. Задачи и решения. М.: ФИЗМАТЛИТ, 2003].
  6. Skopenkov MB, Pakharev AA, Ustinov AV. Through resistivity network. Matematicheskoe prosveshchenie. 2014;3(18):33–65. (In Russ.) [Скопенков М.Б., Пахарев А.А., Устинов А.В. Сквозь сеть сопротивлений. Математическое просвещение. 2014;3(18);33–65].
  7. Spitzer F. Principles of Random Walk. Princeton, New Jersey, 1964. [Спицер Ф. Принципы случайного блуждания. Пер. с англ. М.: Мир, 1969].
  8. Fikhtengolts GM. Rate differential and integral calculus M.: Nauka, 1966. (In Russ.) [Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. М.: Наука, 1966].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Model of "two-dimensional" brain. Right lower quadrant.

Download (73KB)
3. Figure 2. Parameters' distribution during EEG test.

Download (29KB)
4. Figure 3. Change of potential in dimensionless coordinate Х in "one-dimensional" brain.

Download (63KB)

Copyright (c) 2019 Volobuev A.N., Pyatin V.F., Romanchuk N.P., Romanchuk P.I., Bulgakova S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).