Different in cytoskeleton reorganization in tobacco root cells in the original samsun variety and a transgenic line with FeSOD1 overexpression under salinity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of the study was to study the state and reaction of cytoskeletal elements - microtubules and actin laments, in root cells of Samsun tobacco plants and its transgenic line expressing the FeSOD1 gene from Arabidopsis thaliana with the pea rbcS leader sequence for the localization of the gene product in chloroplasts encoding Fe-dependent superoxide dismutase, constitutively inducing intracellular oxidative stress, by increasing the H2O2 pool for a long-term e ect of moderate concentrations of NaCl and Na2SO4. The main hypothesis was to identify the positive protective e ect of controlled constant oxidative stress on the stability of the most sensitive system that provides growth by division and growth by extension - the tubulin cytoskeleton and e ective intracellular transport and structural stability - the actin lament system. Localization of the microtubule cytoskeleton and actin laments using antibodies to tubulin clone DM1α and actin clone 10-B3 by transmission electron microscopy and immunocytologically, detected by treatment with the second antibodies conjugated with Alexa-488, made it possible to establish signs of reorganization and disassembly of the actin lament network under the action of NaCl and Na2SO4 as in control and in transgenic plants. At the same time, in transgenic plants, di erences can be noted even without exposure, which indicates the e ectiveness of this method for stimulating a protective response. These data suggest that the state of the system of the tubulin cytoskeleton and actin laments may be an indicator of the resistance of FeSOD1 transgenic plants to salinity. A relationship has also been established between the reorganization of the cytoskeleton and vacuolization, especially with Na2SO4.

About the authors

E. N Baranova

All- Russia Research Institute of Agricultural Biotechnology;Russian State Agrarian University - Moscow Timiryazev Agricultural Academy;N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences

127434, Moskva, ul. Timiryazevskaya, 42;127434, Moskva, ul. Timiryazevskaya, 49;127276, Moskva, ul. Botanicheskaya, 4

I. A Chaban

All- Russia Research Institute of Agricultural Biotechnology

127434, Moskva, ul. Timiryazevskaya, 42

E. M Lazareva

All- Russia Research Institute of Agricultural Biotechnology;Lomonosov Moscow State University

Email: greenpro2007@rambler.ru
127434, Moskva, ul. Timiryazevskaya, 42;119234, Moskva, Leninskie Gory 1, str. 12

N. V Kononenko

All- Russia Research Institute of Agricultural Biotechnology

127434, Moskva, ul. Timiryazevskaya, 42

L. R Bogoutdinova

All- Russia Research Institute of Agricultural Biotechnology

127434, Moskva, ul. Timiryazevskaya, 42

L. V Kurenina

All- Russia Research Institute of Agricultural Biotechnology

127434, Moskva, ul. Timiryazevskaya, 42

A. A Gulevich

All- Russia Research Institute of Agricultural Biotechnology

127434, Moskva, ul. Timiryazevskaya, 42

P. N Kharchenko

All- Russia Research Institute of Agricultural Biotechnology

127434, Moskva, ul. Timiryazevskaya, 42

E. A Smirnova

All- Russia Research Institute of Agricultural Biotechnology;Lomonosov Moscow State University

127434, Moskva, ul. Timiryazevskaya, 42;119234, Moskva, Leninskie Gory 1, str. 12

References

  1. Nick P. Microtubules, signaling, and biotic stress // The Plant Journal. 2013. No. 75. P. 309-323. doi: 10.1111/tpj.12102.
  2. Ma X., Liu M. The microtubule cytoskeleton acts as a sensor for stress response signaling in plants // Molecular Biology Reports. 2019. No. 46. P. 5603-5608. doi: 10.1007/s11033-019-04872-x.
  3. Baxter A., Mittler R., Suzuku N. ROS as key players in plant stress signaling // J Exp Bot. 2014. Vol. 65. No. 5. P. 1229-2014. doi: 10.1093/jxb/ert375.
  4. Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development // Development. 2018. Vol. 145. No. 5. Article dev164376. URL: https://journals.biologists.com/dev/article/145/15/dev164376/48468/Reactive- oxygen-species-in-plant- development (дата обращения 25.08.2023). doi: 10.1242/dev.164376.
  5. ROS-mediated abiotic stress- induced programmed cell death in plants / V. Petrov, J. Hille, B. Mueller- Roeber, et al. // Frontiers in Plant Science. 2015. Vol. 6. No. 69. URL: https://www.frontiersin.org/articles/10.3389/fpls.2015.00069/full (дата обращения 25.08.2023). doi: 10.3389/fpls.2015.00069.
  6. Pilon M., Ravet K., Tapken W. The biogenesis and physiological function of chloroplast superoxide dismutases // Biochimica et Biophysica Acta. 2010. Vol. 1807. No. 8. P. 989-998. doi: 10.1016/j.bbabio.2010.11.002.
  7. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses / A. Sofo, A. Scope, M. Nuzzaki, et al. // Int J Nol Sci. 2015. No. 16. P. 13561-13578. doi: 10.3390/ijms160613561.
  8. Activity of the photosynthetic apparatus and antioxidant enzymes in leaves of transgenic Solanum lycopersicum and Nicotiana tabacum plants, with FeSOD1 gene / E. N. Baranova, E. K. Serenko, T. I. Balachina, et al. // Russian Agricultural Science. 2010. Vol. 36. No. 4. P. 242-249. doi: 10.3103/S1068367410040075.
  9. Formation of atypical tubulin structures in plant cells as a nonspecific response to abiotic stress / E. N. Baranova, N. K. Christov, L. V. Kurenina, et al. // Bulgarian Journal of Agricultural Science. 2016. Vol. 22. No. 6. P. 987-992. URL: https://www.agrojournal.org/22/06-17.pdf (дата обращения 25.08.2023).
  10. Root cells structural changes induced by salt stress are mitigated in FeSOD transgenic tomato plants / L. R. Bogoutdinova, E. M. Lazareva, I. A. Chaban, et al. // Biology. 2020. Vol. 9. No. 9. Article 297. URL: https://www.mdpi.com/2079-7737/9/9/297 (дата обращения 25.08.2023). doi: 10.3390/biology9090297
  11. Time and cell-cycle dependent formation of heterogeneous tubulin arrays induced by colchicine in Triticum aestivum root meristem / E. M. Lazareva, V. Y. Polyakov, Y. S. Chentsov, et al. // Cell Biol Intern. 2003. Vol. 27. No. 8. P. 633-646. doi: 10.1016/S1065-6995(03)00120-3.
  12. Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana / P. Livanos, B. Galatis, H. Quader, et al. // Cytoskeleton. 2012. No. 69. P. 1-21. URL: https://onlinelibrary.wiley.com/doi/10.1002/cm.20538 (дата обращения 25.08.2023). doi: 10.1002/cm.20538.
  13. Livanos P., Galatis B., Aposolakos P. The interplay between ROS and tubulin cytoskeleton in plants // Plant Signaling Behav. 2014. No. 9. Article e28069 Landes Bioscience. URL: https://www.tandfonline.com/doi/full/10.4161/psb.28069 (дата обращения 25.08.2023). doi: 10.4161/psb.28069.
  14. Bennett M. D., Smith J. B. Colchicine- induced paracrystals in the tapetum of wheat anthers // J Cell Sci. 1979. No. 38. P. 23-32. doi: 10.1242/jcs.38.1.23.
  15. Masurovsky E. B., Horwitz S. B. Ultrastructural effects of colchicne, vinblastibe and taxol in drug-sensitive and multidrug- resistant J774.2 cells // Protoplasma. 1989. No. 148. P. 138-149. doi: 10.1007/BF02079333.
  16. Wang C., Li J., Yuan M. Salt tolerance requires cortical microtubule reorganization in Arabidopsis // Plant Cell Physiol. 2007. No. 48. P. 1534-1547. doi: 10.1093/pcp/pcm123.
  17. The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis / C. Wang, L. Zhang, M. Yuan, et al. // Plant Biology. 2009. Vol. 12. No. 1. P. 70-78. doi: 10.1111/j.1438-8677.2009.00201.x.
  18. Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress / S. G. Liu, D. Z. Zhu, G. H. Chen, et al. // Plant Cell Rep. 2012. No. 31. P. 1219-1226. doi: 10.1007/s00299-012-1242-z.
  19. Lipid signaling requires ROS production to elicit actin cytoskeleton remodelling during plant innate immunity / L. Cao, W. Wang, W. Zhang, et al. // Int J Mol Sci. 2022. No. 23. Article 2447. URL: https://www.mdpi.com/1422-0067/23/5/2447 (дата обращения 25.08.2023). doi: 10.3390/ijms23052447.
  20. Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway / H. Leontovycova, T. Kalachova, L. Trda, et al. //Scientific Reports. 2019. No. 9. Article 10397. URL: https://www.nature.com/articles/s41598-019-46465-5 (дата обращения 25.08.2023). doi: 10.1038/s41598-019-46465-5.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».