Management of the technical condition of agricultural machinery using digital technologies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The studies were conducted to substantiate the development of devices and software for managing the technical condition of agricultural machinery using elements of artificial intelligence. The use of artificial intelligence makes it possible to implement a strategy for predictive maintenance and repair of C3 equipment – an integrated approach that allows you to determine the condition of a machine in operation and estimate when maintenance should be carried out. To do this, it is necessary to develop electronic diagnostic devices and sensors that can be combined into a single intelligent information complex that allows you to quickly collect and process large amounts of data on the parameters of the technical condition of agricultural machinery through the use of artificial intelligence. The object of the study is the hydromechanical gearbox of the Kirovets tractor for agricultural and industrial purposes. In 2022–2024, developed data collection devices, software and methods for assessing the technical condition of machines using artificial intelligence and neural network algorithms, and also described the manufactured digital diagnostic devices. Using the example of analyzing the operating parameters of the hydromechanical gearbox of the Kirovets tractor, the introduced concept of technical condition is specified, which consists in calculating the Yn parameter using a neural network, characterizing the nominal, permissible, limiting or emergency technical condition, and establishing recommendations to the owner on the type of possible work and service. Thanks to monitoring and analyzing the operating parameters of the gearbox using AI and continuous updating of the technical condition, technical maintenance and repair are carried out in a timely manner, which ensures technical condition management and increased reliability of agricultural machinery, minimizes failures and related equipment downtime.

Full Text

Restricted Access

About the authors

A. S. Dorokhov

Federal Scientific Agricultural Engineering Center of the All-Russian Mechanization Institute

Author for correspondence.
Email: dorokhov.vim@yandex.ru

доктор технических наук, академик РАН

Russian Federation, Moscow

Yu. V. Kataev

Federal Scientific Agricultural Engineering Center of the All-Russian Mechanization Institute

Email: dorokhov.vim@yandex.ru

кандидат технических наук

Russian Federation, Moscow

M. N. Kostomakhin

Federal Scientific Agricultural Engineering Center of the All-Russian Mechanization Institute

Email: dorokhov.vim@yandex.ru

кандидат технических наук

Russian Federation, Moscow

N. A. Petrishchev

Federal Scientific Agricultural Engineering Center of the All-Russian Mechanization Institute

Email: dorokhov.vim@yandex.ru

кандидат технических наук

Russian Federation, Moscow

E. V. Pestryakov

Federal Scientific Agricultural Engineering Center of the All-Russian Mechanization Institute

Email: dorokhov.vim@yandex.ru
Russian Federation, Moscow

A. S. Sayapin

Federal Scientific Agricultural Engineering Center of the All-Russian Mechanization Institute

Email: dorokhov.vim@yandex.ru
Russian Federation, Moscow

References

  1. Результаты научных исследований агроинженерных научных организаций по развитию цифровых систем в сельском хозяйстве / Ю. Ф. Лачуга, А. Ю. Измайлов, Я. П. Лобачевский и др. // Техника и оборудование для села. 2022. № 3 (297). С. 2–9. doi: 10.33267/2072-9642-2022-3-2-9.
  2. Совершенствование мониторинга системы «Человек-машина-среда» и правил эксплуатации для повышения эксплуатационной надежности тракторов / Н. А. Петрищев, М. Н. Костомахин, А. С. Саяпин и др. // Технический сервис машин. 2020. № 3 (140). С. 12–20. doi: 10.22314/2618-8287-2020-58-3-12-20.
  3. Ерохин М. Н., Дорохов А. С., Катаев Ю. В. Интеллектуальная система диагностирования параметров технического состояния сельскохозяйственной техники // Агроинженерия. 2021. № 2 (102). С. 45–50. doi: 10.26897/2687-1149-2021-2-45-50.
  4. Черноиванов В. И., Денисов В. А., Соломашкин А. А. Способ определения остаточного ресурса деталей машин // Технический сервис машин. 2020. № 1 (138). С. 50–57. doi: 10.22314/2618-8287-2020-58-1-50-57.
  5. Метод дистанционного контроля функциональных показателей сельскохозяйственной техники / В. Е. Таркивский, Н. В. Трубицын, Е. С. Воронин и др. // Техника и оборудование для села. 2018. № 12. С. 22–25.
  6. Федоренко В. Ф., Таркивский В. Е. Цифровые беспроводные технологии для оценки показателей сельскохозяйственной техники // Сельскохозяйственные машины и технологии. 2020. Т. 14. № 1. С. 10–15. doi: 10.22314/2073-7599-2020-14-1-10-15.
  7. Application of Deep Learning in Fault Diagnosis of Rotating Machinery / W. Jiang, C. Wang, J. Zou, et al. // Processes. 2021. Vol. 9. No. 919. URL: https://www.mdpi.com/2227–9717/9/6/919 (дата обращения: 11.06.2024). doi: 10.3390/pr9060919.
  8. Стратегия машинно-технологической модернизации сельского хозяйства России до 2030 года (прогноз) / З. А. Годжаев, В. Г. Шевцов, А. В. Лавров и др. // Технический сервис машин. 2019. № 4 (137). С. 220–229.
  9. Лобачевский Я. П., Дорохов А. С. Цифровые технологии и роботизированные технические средства для сельского хозяйства // Сельскохозяйственные машины и технологии. 2021. Т. 15. № 4. С. 6–10. doi: 10.22314/2073-7599-2021-15-4-6-10.
  10. Пастухов А. Г., Тимашов Е. П. Диагностирование опорных узлов трансмиссии на основе изучения термонагруженности // Сельскохозяйственные машины и технологии. 2023. Т. 17. № 2. С. 61–68. doi: 10.22314/2073-7599-2023-17-2-61-68.
  11. Online monitoring of the technical condition of energy saturated agricultural equipment using neural networks / Y. Kataev, I. Tishaninov, E. Gradov, et al. // E3S Web of Conferences. 2023. No. 402. 03026. URL: https://www.e3sconferences.org/articles/e3sconf/abs/2023/39/e3sconf_transsiberia2023_03026/e3sconf_transsiberia2023_03026.html (дата обращения: 11.06.2024). doi: 10.1051/e3sconf/202340203026.
  12. Shao S., Wang P., Yan R. Generative adversarial networks for data augmentation in machine fault diagnosis. Computers in Industry. 2019. No. 106. P. 85–93. doi: 10.1016/j.compind.2019.01.001.
  13. Костомахин М. Н. Пестряков Е. В. Программный комплекс для дистанционного контроля узлов и агрегатов // Сельскохозяйственные машины и технологии. 2022. Т. 16. № 4. С. 19–25. doi: 10.22314/2073-7599-2022-16-4-19-25.
  14. Научно-технические достижения агроинженерных научных организаций в условиях цифровой трансформации сельского хозяйства / Я. П. Лобачевский, Ю. Ф. Лачуга, А. Ю. Измайлов и др. // Техника и оборудование для села. 2023. № 3 (309). С. 2–12. doi: 10.33267/2072-9642-2023-3-2-11.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Intellectual software complex with digital means of collection, transmission and analysis of diagnostic data of technical condition of machinery

Download (415KB)
3. Fig. 2. Schematic diagram of the device for intelligent monitoring of control system with hydraulic control system: 1 - measurement module with accelerometer, 2 - indication module, 3 - intelligent diagnostics module, 4 - overhead temperature sensor, 5 - adapter for connection to pressure control system, 6 - standard pressure sensor, 7 - telematic terminal

Download (85KB)
4. Fig. 3. Transient process of pressure and acceleration change during gear changeover

Download (68KB)
5. Fig. 4. NS training algorithm for 500 epochs (epochs) to calculate the parameter Yn, characterising the assessment of the general technical condition of the hydraulic control system of the control system

Download (195KB)
6. Fig. 5. Schematic diagram of the device for non-disassembly intelligent monitoring and assessment of the overall technical condition of the hydraulic control system of the control system

Download (175KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».