Modeling crop rotation productivity using an adaptive neuro-fuzzy inference system
- Authors: Kalichkin V.K.1, Fedorov D.S.1, Maksimovich K.Y.1
-
Affiliations:
- Siberian Federal Research Center of Agricultural Biotechnology, Russian Academy of Sciences
- Issue: No 6 (2024)
- Pages: 14-20
- Section: Agriculture and land reclamation
- URL: https://journal-vniispk.ru/2500-2627/article/view/282958
- DOI: https://doi.org/10.31857/S2500262724060025
- EDN: https://elibrary.ru/RVEHXI
- ID: 282958
Cite item
Abstract
The study was conducted with the goal of developing a model and forecasting crop rotation productivity using adaptive neuro-fuzzy inference. The work utilized data from long-term field experiments (data from 9 types of crop rotations focused on grain production) conducted by the Siberian Research Institute of Agriculture and Chemicalization of Agriculture (Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences) from 1999 to 2019. During the study, an artificial neural network (ANN) training algorithm was applied using a hybrid optimization method, combining the least squares method and backpropagation, to set up fuzzy rules with appropriate membership functions based on input and output data. Based on the use of adaptive neuro-fuzzy modeling and the MATLAB development environment, ANFIS crop rotation productivity model has been developed. The ANFIS rules formed during training allow for fairly accurate determination of significant factor combinations that influence the productivity of the given crop rotations. In predictive modeling of three types of crop rotations, the significant role of winter crops and crop rotation elements in enhancing crop rotation resilience to adverse atmospheric moisture conditions and improving the effectiveness of agrochemical application was revealed. A comprehensive analysis using various accuracy metrics (coefficient of determination – 0.78; root mean square error – 5.66; mean absolute error – 4.31; mean absolute percentage error – 20.07 %) indicates the model has good predictive ability. The developed ANFIS model demonstrates a strong ability to account for complex nonlinear relationships between the features influencing crop rotation productivity and can be used in production decision-making for short- and long-term planning.
About the authors
V. K. Kalichkin
Siberian Federal Research Center of Agricultural Biotechnology, Russian Academy of Sciences
Author for correspondence.
Email: vk.kalichkin@gmail.com
доктор сельскохозяйственных наук
Russian Federation, 630501, Novosibirskaya obl., Novosibirskii r-n, pos. KrasnoobskD. S. Fedorov
Siberian Federal Research Center of Agricultural Biotechnology, Russian Academy of Sciences
Email: vk.kalichkin@gmail.com
Russian Federation, 630501, Novosibirskaya obl., Novosibirskii r-n, pos. Krasnoobsk
K. Yu. Maksimovich
Siberian Federal Research Center of Agricultural Biotechnology, Russian Academy of Sciences
Email: vk.kalichkin@gmail.com
кандидат биологических наук
Russian Federation, 630501, Novosibirskaya obl., Novosibirskii r-n, pos. KrasnoobskReferences
- Schöning J., Wachter P., Trautz D. Crop rotation and management tools for every farmer?: The current status on crop rotation and management tools for enabling sustainable agriculture worldwide // Smart Agricultural Technology. 2023. Vol. 3. Р. 100086. URL: https://www.sciencedirect.com/science/article/pii/S277237552200051X (дата обращения: 01.08.2024).
- Review on the contribution of farming practices and technologies towards climate-smart agricultural outcomes in a European context / K. T. Erekaloa, S. M. Pedersena, T. Christensena, et al. // Smart Agricultural Technology. 2024. Vol. 7. Р. 100413. URL: https://www.sciencedirect.com/science/article/pii/S2772375524000182 (дата обращения: 01.08.2024).
- Юшкевич Л. В., Чибис В. В. Особенности формирования полевых севооборотов в условиях лесостепи Западной Сибири // Вестник Красноярского государственного аграрного университета. 2021. № 9 (174). С. 3‒9. doi: 10.36718/1819-4036-2021-9-3-9.
- Фитосанитарное состояние и урожайность озимой пшеницы в севооборотах лесостепной зоны Поволжья / А. Л. Тойгильдин, М. И. Подсевалов, И. А. Тойгильдина и др. // Аграрная наука. 2022. Т. 354. № 11–12. С. 82‒87. doi: 10.32634/0869-8155-2021-354-11-12-82-87.
- Model-based design of crop diversification through new field arrangements in spatially heterogeneous landscapes. A review / I. M. Hernández-Ochoa, T. Gaiser, K.-C. Kersebaum, et al. // Agronomy for Sustainable Development. 2022. Vol. 42. No. 4. Р. 74. URL: https://link.springer.com/article/10.1007/s13593-022-00805-4 (дата обращения: 04.08.2024).
- AI-and data-driven crop rotation planning / S. Fenz, T. Neubauer, J. K. Friedel, et al. // Computers and Electronics in Agriculture. 2023. Vol. 212. P. 108160. URL: https://www.sciencedirect.com/science/article/pii/S0168169923005483 (дата обращения: 01.08.2024).
- Multi-objective models for crop rotation planning problems / R. D. S. G. Pontes, D. N. Brandão, F. L. Usberti, et al. // Agricultural Systems. 2024. Vol. 219. Р. 104050. URL: https://www.sciencedirect.com/science/article/pii/S0308521X24002002 (дата обращения: 19.08.2024).
- AI-and data-driven pre-crop values and crop rotation matrices / S. Fenz, T. Neubauer, J. Heurix, et al. // European Journal of Agronomy. 2023. Vol. 150. P. 126949. URL: https://www.sciencedirect.com/science/article/pii/S1161030123002174 (дата обращения: 07.07.2024).
- Pahmeyer C., Kuhn T., Britz W. «Fruchtfolge»: A crop rotation decision support system for optimizing cropping choices with big data and spatially explicit modeling // Computers and Electronics in Agriculture. 2021. Vol. 181. P. 105948. URL: https://www.sciencedirect.com/science/article/pii/S0168169920331537 (дата обращения: 07.07.2024).
- Dupuis A., Dadouchi C., Agard B. Methodology for multi-temporal prediction of crop rotations using recurrent neural networks // Smart Agricultural Technology. 2023. Vol. 4. Р. 100152. URL: https://www.sciencedirect.com/science/article/pii/S2772375522001162 (дата обращения: 07.06.2024).
- Dupuis A., Dadouchi C., Agard B. Predicting crop rotations using process mining techniques and Markov principals // Computers and Electronics in Agriculture. 2022. Vol. 194. Р. 106686. URL: https://www.sciencedirect.com/science/article/pii/S0168169922000035 (дата обращения: 09.07.2024).
- de Campos Souza P. V. Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature // Applied soft computing. 2020. Vol. 92. Р. 106275. URL: https://www.sciencedirect.com/science/article/pii/S1568494620302155 (дата обращения: 12.08.2024).
- Remya S., Sasikala R. Performance evaluation of optimized and adaptive neuro fuzzy inference system for predictive modeling in agriculture // Computers & Electrical Engineering. – 2020. Vol. 86. P. 106718. URL: https://www.sciencedirect.com/science/article/pii/S0045790620305735 (дата обращения: 05.08.2024).
- Rathnayake N., Dang T. L., Hoshino Y. A novel optimization algorithm: Cascaded adaptive neuro-fuzzy inference system // International Journal of Fuzzy Systems. 2021. Vol. 23. No. 7. Р. 1955‒1971. doi: 10.1007/s40815-021-01076-z.
- Remya S. An adaptive neuro-fuzzy inference system to monitor and manage the soil quality to improve sustainable farming in agriculture // Soft Computing. 2022. Vol. 26. № 23. Р. 13119‒13132. doi: 10.1007/s00500-022-06832-3.
- Modeling and simulation of a multi-parametric fuzzy expert system for variable rate nitrogen application / A. Heiß, D. S. Paraforos, G. M. Sharipov, et al. // Computers and Electronics in Agriculture. 2021. Vol. 182. Р. 106008 URL: https://www.sciencedirect.com/science/article/pii/S0168169921000260 (дата обращения: 10.08.2024).
- An Insight into Fuzzy Logic Computation Technology and Its Applications in Agriculture and Meteorology / S. Sowmiyaa, S. Moghana Lavanya, K. Mahendran, et al. // Oriental Journal of Computer Science and Technology. 2021. Vol. 13. No. 2, 3. Р. 97‒101. doi: 10.13005/ojcst13.0203.06.
- Sensitivity analysis of Takagi-Sugeno fuzzy neural network / J. Wang, Q. Chang, T. Gao, et al. // Information Sciences. 2022. Vol. 582. Р. 725‒749. doi: 10.1016/j.ins.2021.10.037.
- Классификация состояния растений с использованием адаптивной нейро-нечеткой инференционной системы (ANFIS) / В. В. Брыкин, М. Я. Брагинский, Д. В. Тараканов и др. // Вестник кибернетики. 2024. Т. 23. № 2. С. 23‒30. doi: 10.35266/1999-7604-2024-2-3.
- Урожайность зерновых культур в звеньях севооборотов лесостепи Приобья / А. Н. Власенко, В. Н. Шоба, Г. М. Захаров и др. // Земледелие. 2016. № 5. С. 12‒14.
- Органическое земледелие в лесостепи Западной Сибири: связь урожайности яровой пшеницы и влагообеспеченности территории / К. Ю. Максимович, Д. С. Федоров, В. К. Каличкин и др. // Аграрный вестник Северного Кавказа. 2022. № . 2 (46). С. 32‒38. doi: 10.31279/2222-9345-2022-11-46-32-38.
- Tigkas D., Vangelis H., Tsakiris G. DrinC: a software for drought analysis based on drought indices // Earth Science Informatics. 2015. Vol. 8. Р. 697‒709. doi: 10.1007/s12145-014-0178-y.
- Руководство для пользователей стандартизированного индекса осадков // ВМО-№ 1090. 2012. 26 c. URL: https://www.droughtmanagement.info/literature/WMO_standardized_precipitation_index_user_guide_ru_2012.pdf (дата обращения: 10.08.2024).
- Jang J. S. ANFIS: adaptive-network-based fuzzy inference system // IEEE transactions on systems, man, and cybernetics. 1993. Vol. 23. No. 3. P. 665‒685. doi: 10.1109/21.256541.
- Karaboga D., Kaya E. Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey // Artificial Intelligence Review. 2019. Vol. 52. No. 4. P. 2263‒2293. doi: 10.1007/s10462-017-9610-2.
Supplementary files
