Effect of biologically active compounds on functional parameters and intestinal microbiome structure of laying hens

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Studies were conducted to evaluate the effect of phytobiotic and probiotic substances, as well as dietary fibers and enterosorbents on productive characteristics, blood biochemical parameters, mineral balance and intestinal microbiota of laying hens in order to develop measures to optimize mineral nutrition with the inclusion of bioactive substances in the diet. The work was carried out on hens of cross Hisex Brown at the age from 90 to 210 days, which corresponds to the phase of active formation of reproductive system and accumulation of key trace elements in the body. The inclusion of various biologically active substances had a specific effect on the excretion of certain minerals from the body and the balance of bacterial communities, which ultimately affected the overall productivity of poultry and the efficiency of feed utilization. The use of phytogenic Digestarom showed an increase in egg production by 7.78 % (p ≤ 0.05), which is associated with the activation of carbohydrate and protein metabolism, as well as changes in the composition of intestinal microflora. In the blind intestine of birds of the group receiving the enterosorbent Tsamax, there was a decrease in the number of bacteria of the genus Bifidobacterium, Faecalibacterium and Lactobacillus, while the number of cellulosolytics increased, correlating with the level of K, Cr and Mn. Application of the probiotic Vetom resulted in a decrease in the same families, which was correlated with the assimilation of Cr, Se and Co. The dietary fiber supplement Arbocel stimulated the growth of Pseudomonadota bacteria and decreased the amount of Bacillota; the number of microorganisms of the Oscillospiraceae family correlated with the levels of I, Fe and P. Digestarom use induced a decrease in Lactobacillaceae (by 13,7 %) and an increase in Oscillospiraceae (by 19,7 %), Clostridiaceae (by 61,2 %), Lachnospiraceae (by 39,2 %), related to Mg and K levels.

全文:

受限制的访问

作者简介

D. Silin

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: dasilin@mail.ru
俄罗斯联邦, 29, January 9th St., Orenburg, 460000

S. Lebedev

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: dasilin@mail.ru

доктор биологических наук, член-корреспондент РАН

俄罗斯联邦, 29, January 9th St., Orenburg, 460000

I. Vershinina

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: dasilin@mail.ru

кандидат биологических наук

俄罗斯联邦, 29, January 9th St., Orenburg, 460000

T. Kazakova

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: dasilin@mail.ru
俄罗斯联邦, 29, January 9th St., Orenburg, 460000

O. Marshinskaya

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: dasilin@mail.ru
俄罗斯联邦, 29, January 9th St., Orenburg, 460000

参考

  1. Ricke S. C., Dittoe D. K., Richardson K. E. Formic Acid as an Antimicrobial for Poultry Production: A Review. // Frontiers in Veterinary Science. 2020. Vol. 7. P. 563. URL: https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2020.00563/full (дата обращения: 22.09.2024). doi: 10.3389/fvets.2020.00563.
  2. Potential of Essential Oils for Poultry and Pigs / H. Zhai, H. Liu, S. Wang, еt al. // Animal Nutrition. 2018. Vol. 4. No. 2. P. 179–186. doi: 10.1016/j.aninu.2018.01.005.
  3. Al-Khalaifah H. S. Benefits of Probiotics and/or Prebiotics for Antibiotic-Reduced Poultry. // Poultry Science. 2018. Vol. 97 No. 11. P. 3807–3815. doi: 10.3382/ps/pey160.
  4. Ricke S. C., Richardson K., Dittoe D. K. Formaldehydes in Feed and Their Potential Interaction with the Poultry Gastrointestinal Tract Microbial Community. A Review. // Frontiers in Veterinary Science. 2019. Vol. 6. P. 188. URL: https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2019.00188/full (дата обращения: 22.09.2024). doi: 10.3389/fvets.2019.00188.
  5. Broad-Host-Range Salmonella Bacteriophage STP4-A and Its Potential Application Evaluation in Poultry Industry. / M. Li, H. Lin, Y. Jing, et al. // Poultry Science. 2020. Vol. 99. No. 7. P. 3643–3654. doi: 10.1016/j.psj.2020.03.051.
  6. Nano Zinc, an Alternative to Conventional Zinc as Animal Feed Supplement: A Review. / P. S. Swain, S. B. N. Rao, D. Rajendran, et al. // Animal Nutrition. 2016. Vol. 2. No. 3. P. 134–141. doi: 10.1016/j.aninu.2016.06.003.
  7. Systematic Review and Meta-Analysis of the Effect of Feed Enzymes on Growth and Nutrient Digestibility in Grow-Finisher Pigs: Effect of Enzyme Type and Cereal Source. / A. Torres-Pitarch, E. G. Manzanilla, G. E. Gardiner, et al. // Animal Feed Science and Technology. 2019. Vol. 251. P. 153–165. doi: 10.1016/j.anifeedsci.2018.12.007.
  8. Uncaria Tomentosa (Willd. Ex Schult.) DC.: A Review on Chemical Constituents and Biological Activities. / G. E. S. Batiha, A. M. Beshbishy, L. Wasef, et al. // Applied Sciences. 2020. Vol. 10. P. 2668. URL: https://www.mdpi.com/2076-3417/10/8/2668 (дата обращения: 22.09.2024). doi: 10.3390/app10082668.
  9. Sumiati S., Darmawan A., Hermana W. Performances and Egg Quality of Laying Ducks Fed Diets Containing Cassava (Manihot Esculenta Crantz) Leaf Meal and Golden Snail (Pomacea Canaliculata). // Tropical Animal Science Journal. 2020. Vol. 43. P. 227–232. doi: 10.5398/tasj.2020.43.3.227.
  10. Dietary Inclusion Effects of Phytochemicals as Growth Promoters in Animal Production. / N. V. Valenzuela-Grijalva, A. Pinelli-Saavedra, A. Muhlia-Almazan, et al. // Journal of Animal Science and Technology. 2017. Vol. 59. P. 8. URL: https://janimscitechnol.biomedcentral.com/articles/10.1186/s40781-017-0133-9 (дата обращения: 22.09.2024). doi: 10.1186/s40781-017-0133-9.
  11. Conservation and Sustainable Use of Medicinal Plants: Problems, Progress, and Prospects. / S. L. Chen, H. Yu, H. M. Luo, et al. // Chinese Medicine. 2016. Vol. 11. P. 37. URL: https://cmjournal.biomedcentral.com/articles/10.1186/s13020-016-0108-7 (дата обращения: 22.09.2024). doi: 10.1186/s13020-016-0108-7.
  12. Exploitation of Chemical, Herbal and Nanoformulated Acaricides to Control the Cattle Tick, Rhipicephalus (Boophilus) Microplus. A Review. / B. Banumathi, B. Vaseeharan, P. Rajasekar // Veterinary Parasitology. 2017. Vol. 244. P. 102–110. doi: 10.1016/j.vetpar.2017.07.021.
  13. Probiotics, Prebiotics and Competitive Exclusion for Prophylaxis Against Bacterial Disease. / T. R. Callaway, T. S. Edrington, R. C. Anderson, et al. // Animal Health Research Reviews. 2008. Vol. 9. P. 217–225. doi: 10.1017/S1466252308001540.
  14. Gaggia F., Mattarelli P., Biavati B. Probiotics and Prebiotics in Animal Feeding for Safe Food Production. // International Journal of Food Microbiology. 2010 Vol. 141. P. 15–28. doi: 10.1016/j.ijfoodmicro.2010.02.031.
  15. Laying Performance and Egg Quality of Hens Supplemented with Humate and Sodium Bicarbonate During the Late Laying Period. / M. A. Yörük, M. Gül, A. Hayirli, et al. // Journal of Applied Animal Research. 2004. Vol. 26. P. 17–21. doi: 10.1080/09712119.2004.9706498.
  16. Effects of Dietary Probiotic (Pediococcus Acidilactici) Supplementation on Performance, Nutrient Digestibility, Egg Traits, Egg Yolk Cholesterol, and Fatty Acid Profile in Laying Hens. / D. Mikulski, J. Jankowski, J. Naczmanski, et al. // Poultry Science. 2012. Vol. 91. P. 2691–2700. doi: 10.3382/ps.2012-02370.
  17. Identification of Lactobacilli Isolated from the Cloaca and Vagina of Laying Hens and Characterization for Potential Use as Probiotics to Control Salmonella Enteritidis. / E. Coillie, J. Van Goris, I. Cleenwerck, et al. // Journal of Applied Microbiology. 2010. Vol. 102. P. 1095–1106. doi: 10.1111/j.1365-2672.2006.03164.x.
  18. Effects of Different Probiotics on Laying Performance, Egg Quality, Oxidative Status, and Gut Health in Laying Hens. / Q. Xiang, C. Wang, H. Zhang, et al. // Animals (Basel). 2019. Vol. 9. No. 12. P. 1110. URL: https://www.mdpi.com/2076–2615/9/12/1110 (дата обращения: 22.09.2024). doi: 10.3390/ani9121110.
  19. Effects of Probiotic-Supplemented Diets on Growth Performance and Intestinal Immune Characteristics of Broiler Chickens. / S. P. Bai, A. M. Wu, X. M. Ding, et al. // Poultry Science. 2013. Vol. 92. P. 663–670. doi: 10.3382/ps.2012-02813.
  20. Torki M., Mohebbifar A., Mohammadi H. Effects of Supplementing Hen Diet with Lavandula Angustifolia and/or Mentha Spicata Essential Oils on Production Performance, Egg Quality and Blood Variables of Laying Hens. // Veterinary Medical Science. 2021. Vol. 7. No. 1. P. 184–193. doi: 10.1002/vms3.343.
  21. The Assessment of Serum Trace Element Levels as the Diagnostic Biomarkers of Functional State of Broiler Chickens. / S. Lebedev, T. Kazakova, O. Marshinskaia, et al. // Veterinary World. 2023. Vol. 16. No. 7. P. 1512–1519.
  22. Нотова С. В. Эколого-физиологическое обоснование методов коррекции элементного статуса и функциональных резервов организма человека: дис. д-ра мед. наук / Нотова Светлана Викторовна. Оренбург, 2005. 314 с.
  23. Sozcu A. The Effects of Lignocellulose Supplementation on Laying Performance, Egg Quality Parameters, Aerobic Bacterial Load of Eggshell, Serum Biochemical Parameters, and Jejunal Histomorphological Traits of Laying Hens. // Poultry Science. 2020. Vol. 99. No. 6. P. 3179–3187. doi: 10.1016/j.psj.2020.01.024.
  24. Pine (Pinus Massoniana Lamb.) Needle Extract Supplementation Improves Performance, Egg Quality, Serum Parameters, and the Gut Microbiome in Laying Hens. / Y. Guo, S. Huang, L. Zhao, et al. // Frontiers in Nutrition. 2022. Vol. 9. P. 810462. URL: https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.810462/full (дата обращения: 22.09.2024). doi: 10.3389/fnut.2022.810462.
  25. Effect of Dietary Supplementation of Fermented Pine Needle Extract on Productive Performance, Egg Quality, and Serum Lipid Parameters in Laying Hens. / D. Kothari, J. S. Oh, J. H. Kim, et al. // Animals. 2021. Vol. 11. P. 1475. URL: https://www.mdpi.com/2076–2615/11/5/1475 (дата обращения: 22.09.2024). doi: 10.3390/ani11051475.
  26. Ohashi Y., Hiraguchi M., Ushida K. The Composition of Intestinal Bacteria Affects the Level of Luminal Ig A. // Bioscience, Biotechnology, and Biochemistry. 2014. Vol. 70. P. 3031–3035.
  27. Kim Y. J. Effects of Dietary Supplementation of Pine Needle Powder on Carcass Characteristics and Blood Cholesterol Contents of Broiler Chicken. // Korean Journal of Poultry Science. 2011. Vol. 38. P. 51–57. doi: 10.5536/KJPS.2011.38.1.051.
  28. Sozcu A. Growth Performance, pH Value of Gizzard, Hepatic Enzyme Activity, Immunologic Indicators, Intestinal Histomorphology, and Cecal Microflora of Broilers Fed Diets Supplemented with Processed Lignocellulose. // Poultry Science. 2019. Vol. 98. No. 12. P. 6880–6887. doi: 10.3382/ps/pez449.
  29. Сизова Е. А., Королев В. Л., Макаев Ш. А. Морфо-биохимические показатели крови у бройлеров при коррекции рациона солями и наночастицами Cu. // Сельскохозяйственная биология. 2016. Т. 51. № 6. С. 903–911. doi: 10.15389/agrobiology.2016.6.903rus. E
  30. Li X. L., He W. L., Wang Z. B. Effects of Chinese Herbal Mixture on Performance, Egg Quality and Blood Biochemical Parameters of Laying Hens. // Journal of Animal Physiology and Animal Nutrition. 2016. Vol. 100. P. 1041–1049. doi: 10.1111/jpn.12473.
  31. Effect of zeolite dietary supplementation on physiological responses and production of laying hens drinking saline well water in South Sinai. / K.R.S. Emam, H. M. Toraih, A. M. Hassan, et al. // World Veterinary Journal. 2019. Vol. 9. P. 109–122.
  32. Kim D. W., Kim J. H., Kang G. H. Effects of Water Extract Mixtures from Artemisia Capillaris, Camellia Sinensis, Schizandra Chinensis, and Viscum Album Var. Coloratum on Laying Performance, Egg Quality, Blood Characteristics, and Egg Storage Stability in Laying Hens. // Food Science and Animal Resources. 2010. Vol. 30. P. 449–457. doi: 10.5851/kosfa.2010.30.3.449.
  33. Nys Y., Schlegel P., Durosoy S. Adapting Trace Mineral Nutrition of Birds for Optimising the Environment and Poultry Product Quality. // World’s Poultry Science Journal. 2018. Vol. 74. P. 225–238. doi: 10.1017/S0043933918000016.
  34. Egorov I. A., Lenkova T. N., Manukyan V. A. Poultry Diets Without Antibiotics. I. Intestinal Microbiota and Performance of Broiler (Gallus Gallus L.) Breeders Fed Diets with Enterosorbent Possessing Phytobiotic and Probiotic Effects. // Agricultural Biology. 2019. Vol. 54. No. 2. P. 280–290. doi: 10.15389/agrobiology.2019.2.280rus. EDN ZIGJVR.
  35. Фисинин В. И., Лаптев Г. Ю., Никонов И. Н. Изменение бактериального сообщества в желудочно-кишечном тракте кур в онтогенезе. // Сельскохозяйственная биология. 2016. Т. 51. № 6. С. 883–890. doi: 10.15389/agrobiology.2016.6.883rus.
  36. Tejeda-O. J., Kim W. K. Role of Dietary Fiber in Poultry Nutrition. // Animals. 2021. Vol. 11. No. 2. P. 461. URL: https://www.mdpi.com/2076–2615/11/2/461 (дата обращения: 22.09.2024).
  37. Sun B., Hou L., Yang Y. Effects of Adding Eubiotic Lignocellulose on the Growth Performance, Laying Performance, Gut Microbiota, and Short-Chain Fatty Acids of Two Breeds of Hens. // Frontiers in Veterinary Science. 2021. Vol. 8. P. 668003. URL: https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2021.668003/full (дата обращения: 22.09.2024).
  38. Jha R. Dietary Fiber and Intestinal Health of Monogastric Animals. // Frontiers in Veterinary Science. 2019. Vol. 6. P. 48. URL: https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2019.00048/full (дата обращения: 22.09.2024).
  39. Józefiak D., Rutkowski A., Martin S. A. Carbohydrate Fermentation in the Avian Ceca: A Review. // Animal Feed Science and Technology. 2004. Vol. 113. No. 1.4. P. 1–15. URL: https://www.sciencedirect.com/science/article/abs/pii/S0377840103002943?via%3Dihub (дата обращения: 22.09.2024).
  40. Rougière N. Effects of Diet Particle Size on Digestive Parameters in D+ and D-Genetic Chicken Lines Selected for Divergent Digestion Efficiency. // Poultry Science. 2009. Vol. 88. No. 6. P. 1206–1215.
  41. Waite D. W., Taylor M. W. Characterizing the avian gut microbiota: membership, driving influences, and potential function // Frontiers in Microbiology. 2014. Vol. 5. P. 91622. URL: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2014.00223/full (дата обращения: 22.09.2024).
  42. Zeitz J. O. et al. Effects of dietary supplementation of the lignocelluloses FibreCell and OptiCell on performance, expression of inflammation-related genes and the gut microbiome of broilers // Poultry Science. 2019. Vol. 98. No. 1. P. 287–297.
  43. Effect of feeding different levels of lignocellulose on performance, nutrient digestibility, excreta dry matter, and intestinal microbiota in slow growing broilers / I. Röhe, F. Metzger, W. Vahjen, et al. // Poultry Science. 2020. Vol. 99. No. 10. P. 5018–5026. doi: 10.1016/j.psj.2020.06.053.
  44. Belali M., Seidavi A., Bouyeh M. Effects of short-term and combined use of thyme powder and aqueous extract on growth performance, carcass and organ characteristics, blood constituents, enzymes, immunity, intestinal morphology and fatty acid profile of breast meat in broilers // Large Animal Review. 2021. Vol. 27. No. 4. P. 223–232.
  45. Phytogenic Feed Additives as an Alternative to Antibiotic Growth Promoters in Broiler Chickens. / G. R. Murugesan, B. Syed, S. Haldar, et al. // Front Vet Sci. 2015. Vol. 2. P. 21. URL: https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2015.00021/full (дата обращения: 22.09.2024). doi: 10.3389/fvets.2015.00021.
  46. Influence of toxic metal exposure on the gut microbiota (Review). / F. Giambò, S. Italia, M. Teodoro, et al. // World Academy of Sciences Journal. 2021. Vol. 3. No. 2. P. 19. URL: https://www.spandidos-publications.com/10.3892/wasj.2021.90 (дата обращения: 22.09.2024). doi: 10.3892/wasj.2021.90.
  47. Effects of a Combination of Xylanase, Amylase and Protease, and Probiotics on Major Nutrients Including Amino Acids and Non-Starch Polysaccharides Utilization in Broilers Fed Different Levels of Fibers. / A. K. Singh, U. P. Tiwari, J. D. Berrocoso, et al. // Poultry Science. 2019. Vol. 98. No. 11P. 5571–5581. doi: 10.3382/ps/pez310.
  48. Гречкина В. В., Лебедев С. В. Влияние Цамакса и Ветома на биохимические показатели крови и содержание минеральных веществ в организме цыплят-бройлеров. // Животноводство и кормопроизводство. 2022. Т. 105. № . 2. С. 118–129. doi: 10.33284/2658-3135-105-2-118.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Difference in zootechnical indicators of laying hens of experimental groups compared to the control group (X-axis - indicators of the control group, %).

下载 (64KB)
3. Fig. 2. Composition of the microbiome of the cecum of laying hens of the control group.

下载 (87KB)
4. Fig. 3. Composition of the microbiome of the cecum of laying hens of the 1st experimental group.

下载 (86KB)
5. Fig. 4. Composition of the microbiome of the cecum of laying hens of the 2nd experimental group.

下载 (80KB)
6. Fig. 5. Composition of the microbiome of the cecum of laying hens of the 3rd experimental group.

下载 (79KB)
7. Fig. 6. Composition of the microbiome of the cecum of laying hens of the 4th experimental group.

下载 (87KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».