Methodological aspects of forecasting winter rye yield on lands withdrawn from agricultural cultivation
- Authors: Ivanov D.A.1, Arkhipov S.V.1, Antsiferova O.N.1, Kurpas K.S.1
-
Affiliations:
- Federal Research Center «Dokuchaev Soil Science Institute»
- Issue: No 2 (2025)
- Pages: 3-10
- Section: Agriculture and land reclamation
- URL: https://journal-vniispk.ru/2500-2627/article/view/312025
- DOI: https://doi.org/10.31857/S2500262725020016
- EDN: https://elibrary.ru/DDWZNC
- ID: 312025
Cite item
Abstract
About the authors
D. A. Ivanov
Federal Research Center «Dokuchaev Soil Science Institute»
Email: 2016vniimz-noo@list.ru
119017, Moskva, Pyzhevskii per., 7, str. 2
S. V. Arkhipov
Federal Research Center «Dokuchaev Soil Science Institute»119017, Moskva, Pyzhevskii per., 7, str. 2
O. N. Antsiferova
Federal Research Center «Dokuchaev Soil Science Institute»119017, Moskva, Pyzhevskii per., 7, str. 2
K. S. Kurpas
Federal Research Center «Dokuchaev Soil Science Institute»119017, Moskva, Pyzhevskii per., 7, str. 2
References
- Динамика сельскохозяйственных земель России в XX веке и постагрогенное восстановление растительности и почв / Д. И. Люри, С. В. Горячкин, Н. А. Караваева и др. М.: ГЕОС, 2010. 415 с. ISBN 978-5-89118-500-5.
- Сысуев В. В., Матасов В. М., Бричева С. С. Геофизический подход к установлению ландшафтных границ // Вестник Воронежского государственного университета. Серия: География. Геоэкология. 2024. № 1. С. 34–48. doi: 10.17308/geo/1609-0683/2024/1/34-48.
- Детерминанты пространственного распределения заброшенных сельскохозяйственных земель в европейской части России / А. В. Прищепов, Д. Мюллер, М. Ю. Дубинин и др. // Пространственная экономика. 2013. № 3. С. 30–62.
- Щерба В. Н., Долматова О. Н. Оценка состояния и перспективы развития системы землепользования южной лесостепи Омской области // Московский экономический журнал. 2022. № 5. С. 107–122. doi: 10.55186/2413046X_2022_7_5_323.
- Methodological evolution of potato yield prediction: a comprehensive review / Y. Lin, S. Li, S. Duan, et al // Frontiers in Plant Science. 2023. No. 14. P. 1214006. URL: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1214006/full (дата обращения: 21.01.2025). doi: 10.3389/fpls.2023.1214006.
- Бисчоков Р. М., Ахматов М. М. Анализ и прогноз урожайности сельскохозяйственных культур методами нечеткой логики // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2021. № 168. С. 274–287. URL: https://www.elibrary.ru/item.asp?id=45849137 (дата обращения: 21.01.2025). doi: 10.21515/1990-4665-168-020.
- Бисчоков Р. М. Анализ, моделирование и прогноз урожайности сельскохозяйственных культур средствами искусственных нейронных сетей // Вестник Российского университета дружбы народов. Серия: Агрономия и животноводство. 2022. Т. 17. № 2. C. 146–157. doi: 10.22363/2312-797X 2022-17-2-146-157.
- Лебедева В. М., Найдина Т. А. Учет осенне-зимнего увлажнения почвы в динамико-статистической модели прогноза урожайности озимых культур // Гидрометеорологические исследования и прогнозы. 2022. № 4 (386). С. 79–95. doi: 10.37162/2618-9631-2022-4-79-95.
- Андрющенко С. А. Тенденции и условия повышения экологической устойчивости АПК Российской Федерации // Международный сельскохозяйственный журнал. 2023. № 2(392). С. 143–146. doi: 10.55186/25876740_2023_66_2_143.
- Шалов Т. Б., Азубеков Л. Х. Адаптивно-ландшафтные системы земледелия в схеме землеустройства территории сельского поселения // Земледелие. 2013. № 6. С. 28–29.
- Principles and applications of topography in precision agriculture / A. H. Rabia, J. Neupane, Z. Lin, et al. // Advances in Agronomy. 2022. Vol. 171. P. 143–189. doi: 10.1016/bs.agron.2021.08.005.
- Иванов Д. А., Карасева О. В., Рублюк М. В. Изучение динамики продуктивности трав на основе данных многолетнего мониторинга // Аграрная наука Евро-Северо-Востока. 2021. № 22(1). С. 76–84. doi: 10.30766/2072-9081.2021.22.1.76-84.
- Средостабилизирующая роль многолетних трав в условиях современных вызовов экологического и климатического характера / А. И. Белолюбцев, А. Н. Куприянов, И. А. Кузнецов и др. // АгроЭкоИнфо. 2023. № 1(55). URL: http://agroecoinfo.ru/STATYI/2023/1/st_127.pdf (дата обращения: 21.01.2025).
- The application of the soil-agroclimatic index for assessing the agronomic poten-tial of arable lands in the forest-steppe zone of Russia / D. S. Bulgakov, D. I. Rukhovich, E. A. Shishkonakova, et al. // Eurasian Soil Science. 2018. Vol. 51 (4). Р. 448–459. doi: 10.1134/S1064229318040038.
- Шашко Д. И. Розов Н. Н. Внутриобластное природно-сельскохозяйственное районирования как форма учета биоклиматического потенциала // Земледелие. 1989. № 3. С. 18–22.
- Беручашвили Н. Л. Геофизика ландшафта. М.: Высшая школа, 1990. 287 с.
- Иванов Д. А. Влияние почв и рельефа на продуктивность разновозрастных травостоев // Международный сельскохозяйственный журнал. 2021. № 4(382). С. 73–76. doi: 10.24412/2587-6740-2021-4-73-76.
- Рублюк М. В., Иванов Д. А., Карасева О. В. Влияние осушаемых агроландшафтов на свойства почвы и элементы структуры урожая озимой ржи // Плодородие. 2023. № 1 (130). С. 72–76. doi: 10.25680/S19948603.2023.130.17.
- Сысуев В. А., Кедрова Л. И., Уткина Е. И. Значение озимой ржи для сохранения природного агроэкологического баланса и здоровья человека (обзор) // Теоретическая и прикладная экология. 2020. № 1. С. 14–20. doi: 10.25750/1995-4301-2020-1-014-020.
- Минаев П. А. Анализ неиспользуемых земель сельскохозяйственного назначения России // Наука без границ. 2021. № 9(61). С. 26–32.
- Плохинский Н. А. Биометрия. М.: МГУ, 1970. 367 с.
- Learn R Programming. Neuralnet: Training of neural networks. URL: https://www.rdocumentation.org/packages/neuralnet/versions/1.44.2/topics/neuralnet (дата обращения: 14.02.2025).
- Hjort J., Marmion M. Effects of sample size on the accuracy of geomorphological models // Geomorphology. 2008. Vol. 102. P. 341–350.
Supplementary files
