Probabilistic models of estimation of employment in the regions of the Russian federation

Cover Page

Cite item

Abstract

the present study is devoted to the development and application of probabilistic discrete choice models for assessing the employment level in the constituent entities of the Russian Federation. The relevance of the work is due to the significant regional heterogeneity of the Russian labor market and the problem of labor resource imbalances, which hinders the effective use of the country’s potential. The aim of the study is to quantitatively estimate the probability that the regional employment level will exceed the all-Russian benchmark value (63.675%) based on key socio-economic indicators. As the primary analytical tool, a logit model (binary logistic regression), belonging to the class of discrete choice models, was used. Modeling was conducted on panel average-monthly data for the period 2014-2024, obtained from official sources (Rosstat, EMISS). The original dataset included twelve macroeconomic indicators, such as average monthly wages, cost of the consumer basket, volume of household deposits, industrial production index, crime rate, housing construction, and others. The resulting binary variable was formed by comparing the actual employment level with the benchmark. Model parameters were estimated by the maximum likelihood method using the Gretl statistical package, with stepwise exclusion of statistically insignificant variables (p-value > 0.05).

About the authors

Yu. E Gavrilenko

Joint Institute for Nuclear Research; Plekhanov Russian University of Economics

References

  1. Алексеева М. М., Панова И.Г. Экономика труда: учебник для вузов. М.: Юрайт, 2021. 410 с.
  2. Глущенко Ю.В. Пространственная экономика и региональные исследования: монография. Новосибирск: СО РАН, 2019. 312 с.
  3. Глубоковская И.Г. Региональные рынки труда: проблемы и перспективы развития: монография. М.: ИНФРА-М, 2020. 256 с.
  4. Гринберг Р.С., Рубинштейн А.Я., Бессонов В.А. Рынок труда: теория, практика, регулирование. М.: Наука, 2022. 352 с.
  5. Гусев В.Е. Математические методы в экономике: учебник. М.: Юрайт, 2021. 398 с.
  6. Единая межведомственная информационно-статистическая система (ЕМИСС) [Электронный ресурс]. Режим доступа: https://fedstat.ru (дата обращения: 25.03.2025)
  7. Зеленый В.М., Суслов Д.А. Методы дискретного анализа : учебное пособие. М.: Физматлит, 2020. 264 с.
  8. Липсиц И.В. Экономическая социология: рынок труда : учебное пособие. М.: КНОРУС, 2020. 288 с.
  9. Мельникова Е.Б. Статистические методы анализа социально-экономических процессов: учеб. пособие. М.: Финансы и статистика, 2020. 320 с.
  10. Росстат. Федеральная служба государственной статистики [Электронный ресурс]. Режим доступа: https://rosstat.gov.ru (дата обращения: 25.03.2025)
  11. Train K. Discrete Choice Methods with Simulation. Cambridge: Cambridge University Press, 2009. 388 p.
  12. Wooldridge J.M. Introductory Econometrics: A Modern Approach. 6th ed. Boston: Cengage Learning, 2019. 912 p.
  13. Greene W.H. Econometric Analysis. – 8th ed. – Boston : Pearson Education, 2018. 1176 p.
  14. Gretl: GNU Regression, Econometrics and Time-series Library [Электронный ресурс]. Режим доступа: http://gretl.sourceforge.net (дата обращения: 25.03.2025)

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).