Cравнение непараметрических оценок функции выживания

Обложка

Цитировать

Полный текст

Аннотация

В статье проводится сравнение трех видов оценок: экспоненциальной, множительной и степенной структур для функции выживания при случайном цензурировании наблюдений справа. Ранее было установлено, что все эти три оценки при растущем объеме выборки эквивалентны, т. е. при одинаковой центровке и нормировке сходятся к одному и тому же гауссовскому процессу. Конкретно в выборке показано, что степенные оценки определены на всей прямой в отличие от экспоненциальной и множительных оценок. Следовательно, степенные оценки являются лучше, чем остальные две. Подвергнутые цензуре данные используются при анализе выживаемости, в биомедицинских испытаниях, в промышленных экспериментах. Существует несколько схем цензурирования (справа, слева, с обеих сторон, в сочетании с конкурирующими рисками и другими). Однако в статистической литературе широко распространено правостороннее случайное цензурирование, поскольку его легко описать с методологической точки зрения. В статье также рассмотрен этот вид цензурирования, чтобы сравнить наши результаты с другими исследованиями.

Полный текст

1 Предварительные сведения

Исследования непараметрических оценок, экспоненциальной, множительной и степенной структур показывают их асимптотическую эквивалентность (при n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk ziUkabg6HiLcaa@3C58@  ). Некоторые отличительные свойства этих оценок проявляются при фиксированном объеме выборки, и они проведены в монографии [1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaig dacaaIDbaaaa@3A8E@ .

Пусть { Z j ,j1} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadQ fadaWgaaWcbaGaamOAaaqabaGccaaISaGaaGjcVlaadQgacqGHLjYS caaIXaGaaGyFaaaa@41CE@  и { Y j ,j1} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadM fadaWgaaWcbaGaamOAaaqabaGccaaISaGaamOAaiabgwMiZkaaigda caaI9baaaa@403C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  взаимонезависимые последовательности, независимые и одинаково распределенные случайная величина с непрерывными функциями распределения H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@38D4@  и G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@38D3@  соответственно. Наблюдается выборка объема n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@ :

                                                         C (n) ={( ξ j , Δ j ),1jn}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGikaiaad6gacaaIPaaaaOGaaGypaiaaiUhacaaIOaGa eqOVdG3aaSbaaSqaaiaadQgaaeqaaOGaaGilaiabfs5aenaaBaaale aacaWGQbaabeaakiaaiMcacaaISaGaaGjcVlaaysW7caaMi8UaaGym aiabgsMiJkaadQgacqGHKjYOcaWGUbGaaGyFaiaaiYcaaaa@51E1@

где

                                                             ξ j =min Z j ; Y j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadQgaaeqaaOGaaGypaiGac2gacaGGPbGaaiOBamaabmaa baGaamOwamaaBaaaleaacaWGQbaabeaakiaaiUdacaWGzbWaaSbaaS qaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGilaaaa@4593@

                                                               Δ j = I( Z j Y j ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadQgaaeqaaOGaaGypaiaaiccacaWGjbGaaGikaiaadQfa daWgaaWcbaGaamOAaaqabaGccqGHKjYOcaWGzbWaaSbaaSqaaiaadQ gaaeqaaOGaaGykaaaa@43F2@

( I A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaabm aabaGaamyqaaGaayjkaiaawMcaaaaa@3B24@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это индикатор события A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@38CD@ .

1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai6 caaaa@397A@  Если Z j Y j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGQbaabeaakiabgsMiJkaadMfadaWgaaWcbaGaamOAaaqa baaaaa@3DB9@ , то ξ j =min Z j ; Y j = Z j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadQgaaeqaaOGaaGypaiaab2gacaqGPbGaaeOBamaabmaa baGaamOwamaaBaaaleaacaWGQbaabeaakiaaiUdacaWGzbWaaSbaaS qaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGypaiaadQfadaWgaaWc baGaamOAaaqabaaaaa@4799@ , Δ j =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadQgaaeqaaOGaaGypaiaaigdaaaa@3C14@ , и в этом случае мы можем наблюдать Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaaaa@38E6@ ;

2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaai6 caaaa@397B@  Если Y j Z j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGQbaabeaakiabgsMiJkaadQfadaWgaaWcbaGaamOAaaqa baaaaa@3DB9@ , то ξ j =min Z j ; Y j = Y j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadQgaaeqaaOGaaGypaiaab2gacaqGPbGaaeOBamaabmaa baGaamOwamaaBaaaleaacaWGQbaabeaakiaaiUdacaWGzbWaaSbaaS qaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGypaiaadMfadaWgaaWc baGaamOAaaqabaaaaa@4798@ , Δ j =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadQgaaeqaaOGaaGypaiaaicdaaaa@3C13@ , это будет случай цензурирования.

Задача состоит в оценивании функции выживания 1H(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaadIeacaaIOaGaamiEaiaaiMcaaaa@3CDE@  по выборке C (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGikaiaad6gacaaIPaaaaaaa@3B54@  при мешающей функции распределения G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@38D3@ . Для 1H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaadIeaaaa@3A7C@  справедливо представление [2]:

                                                          1H(x)=exp(Λ(x;1)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaadIeacaaIOaGaamiEaiaaiMcacaaI9aGaciyzaiaacIhacaGG WbGaaGikaiabgkHiTiabfU5amjaaiIcacaWG4bGaaG4oaiaaigdaca aIPaGaaGykaiaaiYcaaaa@48DF@

где

                                         Λ x;1 = ;x 1H u 1 dH u = ;x 1N u 1 dM u;1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aae WaaeaacaWG4bGaaG4oaiaaigdaaiaawIcacaGLPaaacaaI9aWaa8qu aeqaleaadaqcWaqaaiabgkHiTiabg6HiLkaaiUdacaWG4baacaGLOa GaayzxaaaabeqdcqGHRiI8aOWaaeWaaeaacaaIXaGaeyOeI0Iaamis amaabmaabaGaamyDaiabgkHiTaGaayjkaiaawMcaaaGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadsgacaWGibWaaeWa aeaacaWG1baacaGLOaGaayzkaaGaaGypamaapefabeWcbaWaaKamae aacqGHsislcqGHEisPcaaI7aGaamiEaaGaayjkaiaaw2faaaqab0Ga ey4kIipakmaabmaabaGaaGymaiabgkHiTiaad6eadaqadaqaaiaadw hacqGHsislaiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqa aiabgkHiTiaaigdaaaGccaWGKbGaamytamaabmaabaGaamyDaiaaiU dacaaIXaaacaGLOaGaayzkaaGaaGilaaaa@6D2B@

                                          N x =P ξ j x =1 1H x 1G x =M x;1 +M x;0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaabm aabaGaamiEaaGaayjkaiaawMcaaiaai2dacaWGqbWaaeWaaeaacqaH +oaEdaWgaaWcbaGaamOAaaqabaGccqGHKjYOcaWG4baacaGLOaGaay zkaaGaaGypaiaaigdacqGHsisldaqadaqaaiaaigdacqGHsislcaWG ibWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaWaae WaaeaacaaIXaGaeyOeI0Iaam4ramaabmaabaGaamiEaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaiaai2dacaWGnbWaaeWaaeaacaWG4bGaaG 4oaiaaigdaaiaawIcacaGLPaaacqGHRaWkcaWGnbWaaeWaaeaacaWG 4bGaaG4oaiaaicdaaiaawIcacaGLPaaacaaISaaaaa@5FA3@

                                                       M x;1 =P ξ j x, Δ j =i ,i=0;1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaamiEaiaaiUdacaaIXaaacaGLOaGaayzkaaGaaGypaiaadcfa daqadaqaaiabe67a4naaBaaaleaacaWGQbaabeaakiabgsMiJkaadI hacaaISaGaaGjcVlabfs5aenaaBaaaleaacaWGQbaabeaakiaai2da caWGPbaacaGLOaGaayzkaaGaaGilaiaayIW7caaMi8UaamyAaiaai2 dacaaIWaGaaG4oaiaaigdacaaIUaaaaa@54A4@

                                       H1nx=1uxexpMnu;1Mnu;11Nnu=1expΛnx;1,H2nx=1uxexp1Mnu;1Mnu;11Nnu,H3nx=11NnxRnx,(1)

где

                                                         R n (x)= Λ n (x;1)( Λ n (x )) 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaGykaiaayIW7caaMe8Ua aGjcVlaai2dacqqHBoatdaWgaaWcbaGaamOBaaqabaGccaaIOaGaam iEaiaaiUdacaaIXaGaaGykaiaaiIcacqqHBoatdaWgaaWcbaGaamOB aaqabaGccaaIOaGaamiEaiaaiMcacaaIPaWaaWbaaSqabeaacqGHsi slcaaIXaaaaOGaaGilaaaa@5159@

                                                    Λ n x;1 = ;x 1 N n u 1 d M n u;1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6gaaeqaaOWaaeWaaeaacaWG4bGaaG4oaiaaigdaaiaa wIcacaGLPaaacaaI9aWaa8quaeqaleaadaqcWaqaaiabgkHiTiabg6 HiLkaaiUdacaWG4baacaGLOaGaayzxaaaabeqdcqGHRiI8aOWaaeWa aeaacaaIXaGaeyOeI0IaamOtamaaBaaaleaacaWGUbaabeaakmaabm aabaGaamyDaiabgkHiTaGaayjkaiaawMcaaaGaayjkaiaawMcaamaa CaaaleqabaGaeyOeI0IaaGymaaaakiaadsgacaWGnbWaaSbaaSqaai aad6gaaeqaaOWaaeWaaeaacaWG1bGaaG4oaiaaigdaaiaawIcacaGL PaaacaaISaaaaa@59F2@

                                                      Λ n x = ;x 1 N n u 1 d N n u , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6gaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa aGypamaapefabeWcbaWaaKamaeaacqGHsislcqGHEisPcaaI7aGaam iEaaGaayjkaiaaw2faaaqab0Gaey4kIipakmaabmaabaGaaGymaiab gkHiTiaad6eadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiaadwhacq GHsislaiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaGccaWGKbGaamOtamaaBaaaleaacaWGUbaabeaakm aabmaabaGaamyDaaGaayjkaiaawMcaaiaaiYcaaaa@56F3@

                                                  N n x = M n x;1 + M n x;0 = 1 n j=1 n I ξ j x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGUbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaa i2dacaWGnbWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaWG4bGaaG 4oaiaaigdaaiaawIcacaGLPaaacqGHRaWkcaWGnbWaaSbaaSqaaiaa d6gaaeqaaOWaaeWaaeaacaWG4bGaaG4oaiaaicdaaiaawIcacaGLPa aacaaI9aWaaSaaaeaacaaIXaaabaGaamOBaaaadaaeWbqabSqaaiaa dQgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakiaadMeadaqada qaaiabe67a4naaBaaaleaacaWGQbaabeaakiabgsMiJkaadIhaaiaa wIcacaGLPaaacaaISaaaaa@5B10@

                                                    M n x;i = 1 n j=1 n I ξ j x, Δ j =i ,i=0,1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGUbaabeaakmaabmaabaGaamiEaiaaiUdacaWGPbaacaGL OaGaayzkaaGaaGypamaalaaabaGaaGymaaqaaiaad6gaaaWaaabCae qaleaacaWGQbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWG jbWaaeWaaeaacqaH+oaEdaWgaaWcbaGaamOAaaqabaGccqGHKjYOca WG4bGaaGilaiabfs5aenaaBaaaleaacaWGQbaabeaakiaai2dacaWG PbaacaGLOaGaayzkaaGaaGilaiaayIW7caaMi8UaaGjcVlaadMgaca aI9aGaaGimaiaaiYcacaaIXaGaaGOlaaaa@5D59@

Таким образом, рассматриваемая модель является моделью случайного цензурирования справа Z j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGQbaabeaaaaa@3A01@  при помощи Y j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGQbaabeaaaaa@3A00@ , где Z j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGQbaabeaaaaa@3A01@  наблюдаемы лишь при Δ j =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadQgaaeqaaOGaaGypaiaayIW7caaMe8UaaGjcVlaaigda aaa@40C3@ .

Пусть G 1n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcaaaa@3D19@ , G 2n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcaaaa@3D1A@  и G 3n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIZaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcaaaa@3D1B@  соответствующие оценки мешающей функции распределения G(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacaWG4bGaaGykaaaa@3B35@ , определяемые формулами (1) с заменой M n (x;1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaG4oaiaaigdacaaIPaaa aa@3DE4@  на M n (x;0). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaG4oaiaaicdacaaIPaGa aGOlaaaa@3E9B@  В рассматриваемой модели 1N(x)=(1H(x))(1G(x)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaad6eacaaIOaGaamiEaiaaiMcacaaI9aGaaGikaiaaigdacqGH sislcaWGibGaaGikaiaadIhacaaIPaGaaGykaiaaiIcacaaIXaGaey OeI0Iaam4raiaaiIcacaWG4bGaaGykaiaaiMcaaaa@4A22@  для всех x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hifaaa@4540@ . Однако для этих трех типов оценок имеем:

 I.

                                               (1 H 1n (x))(1 G 1n (x))=exp( Λ n (x))1 N n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaWGibWaaSbaaSqaaiaaigdacaWGUbaabeaakiaaiIca caWG4bGaaGykaiaaiMcacaaIOaGaaGymaiabgkHiTiaadEeadaWgaa WcbaGaaGymaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaGykaiaa yIW7caaMe8UaaGjcVlaai2daciGGLbGaaiiEaiaacchacaaIOaGaey OeI0Iaeu4MdW0aaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaI PaGaaGykaiabgcMi5kaaigdacqGHsislcaWGobWaaSbaaSqaaiaad6 gaaeqaaOGaaGikaiaadIhacaaIPaGaaGiiaiaaiccaaaa@610A@

и при

                                                            xξ(n)= max1⩽i⩽nξi,

 

                                                          max H 1n (x); G 1n (x) <1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacg gacaGG4bWaaeWaaeaacaWGibWaaSbaaSqaaiaaigdacaWGUbaabeaa kiaaiIcacaWG4bGaaGykaiaaiUdacaWGhbWaaSbaaSqaaiaaigdaca WGUbaabeaakiaaiIcacaWG4bGaaGykaaGaayjkaiaawMcaaiaaiYda caaIXaGaaGOlaaaa@4987@

 II.

                                                     (1 H 2n (x))(1 G 2n (x))1 N n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaWGibWaaSbaaSqaaiaaikdacaWGUbaabeaakiaaiIca caWG4bGaaGykaiaaiMcacaaIOaGaaGymaiabgkHiTiaadEeadaWgaa WcbaGaaGOmaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaGykaiab gcMi5kaaigdacqGHsislcaWGobWaaSbaaSqaaiaad6gaaeqaaOGaaG ikaiaadIhacaaIPaGaaGiiaiaaiccaaaa@5169@

и при

                                                                 x ξ (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgw MiZkabe67a4naaBaaaleaacaaIOaGaamOBaiaaiMcaaeqaaaaa@3F11@

оценки H 2n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIYaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaIGaaa aa@3DC5@  и G 2n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaIGaaa aa@3DC4@  неопределенны.

 III. Для степенных оценок

                                                      (1 H 3n (x))(1 G 3n (x))=1 N n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaWGibWaaSbaaSqaaiaaiodacaWGUbaabeaakiaaiIca caWG4bGaaGykaiaaiMcacaaIOaGaaGymaiabgkHiTiaadEeadaWgaa WcbaGaaG4maiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaGykaiaa i2dacaaIXaGaeyOeI0IaamOtamaaBaaaleaacaWGUbaabeaakiaaiI cacaWG4bGaaGykaiaaiccacaaIGaaaaa@506B@

и, следовательно, при x ξ (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgw MiZkabe67a4naaBaaaleaacaaIOaGaamOBaiaaiMcaaeqaaaaa@3F11@ , H 2n (x)= G 2n (x)=1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIYaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaI9aGa am4ramaaBaaaleaacaaIYaGaamOBaaqabaGccaaIOaGaamiEaiaaiM cacaaI9aGaaGymaiaai6caaaa@452F@

Таким образом, для случая непрерывных распределений H и G, только оценки степенной структуры H 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaiodaaeqaaaaa@38F0@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aad6gaaeqaaaaa@3926@  и G 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaiodaaeqaaaaa@38F0@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aad6gaaeqaaaaa@3926@  являются идентифицируемыми с моделью. Для демонстрации свойств оценок (1) рассмотрим выборку объема n=97 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaI5aGaaG4naaaa@3B45@  из работ [3; 5]. Это данные из центра уединения Ченнинг Хаус (Channing House) в г. Пало Альто (Palo Alto) в Калифорнии (США). Вариационный ряд, построенный по этим данным, есть:

(777;1), (781;0), (843;0), (866;0), (869;1), (872;1), (876;1), (893;1), (894;1), (895;0), (898;1), (906;0), (907;1), (909;1), (911;1), (911;0), (914;0), (927;1), (932;1), (936;0), (940;0), (942,5;0), (943;0), (945;1), (945;0), (948;1), (951;0), (953;0), (956;0), (957;1), (957;0), (959;0), (960;0), (966;1), (966;0), (969;1), (970;0), (971;1), (972;0), (973;0), (977;0), (983;1), (984;0), (985;1), (989;1), (992,5;1), (993;1), (996;1), (998;1), (1001;0), (1002;0), (1005;0), (1006;0), (1009;1), (1011,5;1), (1012;1), (1012;0), (1013;0), (1015;0), (1016;0), (1018;0), (1022;1), (1023;0), (1025;1), (1027;0), (1029;1), (1031;1), (1031;0), (1031,5;0), (1033;1), (1036;1), (1043;1), (1043;0), (1044;1), (1044;0), (1045;0), (1047;0), (1053;1), (1055;1), (1058;0), (1059;1), (1060;1), (1060;0), (1064;0), (1070;0), (1073;0), (1080;1), (1085;1), (1093;0), (1093,5;1), (1094;1), (1106;0), (1107;0), (1118;0), (1128;1), (1139;1), (1153;0).

Здесь данные представлены в месяцах, причем находящееся с рядом число 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  в парах означает нецензурирование (т. е. смерть), а 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  цензурирование. При этом 46 человек умерли с начала открытия центра в 1964 году по 1 июля 1975 года ко дню сбора данных. Это нецензурированные данные. Из остальных данных о 51 человеке 5 были выписаны из центра, а 46 еще были живы к 1 июля 1975 года. Это цензурированные данные. По этим 97 данным приведены графики оценок H m ;97 (x),m=1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGTbaabeaakmaaBaaaleaacaaI7aGaaGyoaiaaiEdaaeqa aOGaaGikaiaadIhacaaIPaGaaGilaiaayIW7caaMi8UaaGjcVlaad2 gacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaiodaaaa@499F@  на рис. 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 3 по отдельности и на рис. 4 вместе:

 

Figure 1: Оценка 1H1;97(x)

 Fig. 1. Estimator  1H1;97(x)

 

Figure 2: Оценка 1H2;97(x)

 Fig. 2. Estimator 1H2;97(x)

 

Figure 3: Оценка 1H3;97(x)

 Fig. 3. Estimator 1H3;97(x) 

 

Figure 4: Оценка 1Hm;97(x),   m=   1,2,3

 Fig. 4. Estimator 1Hm;97(x),   m=   1,2,3

 

Из рисунков видно, что в отличие от экспоненциальных и множительных оценок только степенные оценки определены на всей прямой. Теперь при помощи оценок (1) построим доверительные полосы для неизвестной функции 1H(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaadIeacaaIOaGaamiEaiaaiMcaaaa@3CDE@ . Для этого будем следовать работам [3; 4] и используем доверительные полосы вида

                                               Mmn*x,μ1,μ2=M^mn1x,μ1,μ2;Mmn2x,μ1,μ2,

где m=1,2,3,

                                        M^mn1x,μ1,μ2=Hmnxn121Hmnxμ1dn12T+μ2dnxdn12T,

 Mmn2x,μ1,μ2=Hmnx+n12μ1dn12T+μ2dnxdn12T1+n12μ1dn12T+μ2dnxdn12T,

T=1128 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai2 dacaaIXaGaaGymaiaaikdacaaI4aaaaa@3C9B@ ; μ 1 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaaGypaiaaigdaaaa@3C30@ ; μ 2 =1,37 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaikdaaeqaaOGaaGypaiaayIW7caaMe8UaaGjcVlaaigda caaISaGaaG4maiaaiEdaaaa@4314@  и d n x = ;x 1 N n u 2 d M n u;1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGUbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaa i2dadaWdrbqabSqaamaajadabaGaeyOeI0IaeyOhIuQaaG4oaiaadI haaiaawIcacaGLDbaaaeqaniabgUIiYdGcdaqadaqaaiaaigdacqGH sislcaWGobWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaWG1bGaey OeI0cacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaacqGH sislcaaIYaaaaOGaamizaiaad2eadaWgaaWcbaGaamOBaaqabaGcda qadaqaaiaadwhacaaI7aGaaGymaaGaayjkaiaawMcaaiaai6caaaa@57E9@  Эти полосы для данных объема n=97 с использованием оценок (1) приведены на рис. 5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 7.

 

Figure 5: Доверительные полосы M1*;97(x;1;1,37)

 Fig. 5. Confidence bands M1*;97(x;1;1,37)

 

Figure 6: Доверительные полосы M2*;97(x;1;1,37)

 Fig. 6. Confidence bands M2*;97(x;1;1,37)

 

Figure 7: Доверительные полосы M3*;97(x;   1;   1,37)

 Fig. 7. Confidence bands M3*;97(x;   1;   1,37)

 

Заключение

 Сравнивают три вида оценок: экспоненциальной, множительной и степенной для функции выживания при случайном цензурировании справа. Ранее была установлена асимптотическая эквивалентность этих трех видов оценок при растущем объеме выборки в смысле сходимости к одному и тому же гауссовскому процессу. Для конкретной конечной выборки объема n=97 показаны некоторые преимущества степенной оценки по сравнению с остальными двумя. Следовательно, эта оценка лучше, чем остальные. Имеются численные примеры демонстрации результатов.  

×

Об авторах

Абдурахим Ахмедович Абдушукуров

Московский государственный университет, филиал в г. Ташкенте

Email: a_abdushukurov@rambler.ru
ORCID iD: 0000-0002-0994-8127

профессор кафедры прикладной математики и информатики

Узбекистан, Ташкент

Cухроб Баходирович Бозоров

Гулистанский государственный университет

Автор, ответственный за переписку.
Email: suxrobbek_8912@mail.ru
ORCID iD: 0009-0001-8133-4963

докторант кафедры математики факультета информационных
технологий

Узбекистан, Гулистан

Список литературы

  1. Абдушукуров А.А. Статистика неполных наблюдений. Ташкент: Университет, 2009. 269 c.
  2. Abdushukurov A.A., Bozorov S.B., Nurmukhamedova N.S. Nonparametric Estimation of Distribution Function Under Right Random Censoring Based on Presmoothed Relative — Risk Function // Lobachevskii Journal of Mathematics, 2021, vol. 42, no. 2, pp. 257–268. DOI: https://doi.org/10.1134/S1995080221020049.
  3. Cs¨org˝o S. Estimating in the proportional hazards model of random censorship // Statistics. 1988. Vol. 19, Issue 3. Pp. 437–463. DOI: https://doi.org/10.1080/02331888808802115.
  4. Cs¨org˝o S., Horvath L. Confidence bands from censored samples // Canadian Journal of Statistics-revue Canadienne De Statistique. 1986. Vol. 14, Issue 2. Pp. 131–144. DOI: https://doi.org/10.2307/3314659.
  5. Efron B. Censored Data and the Bootstrap // Journal of the American Statistical Association, 1981, vol. 76, № 374, pp. 312–319. DOI: http://doi.org/10.2307/2287832.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Figure 1: Оценка

Скачать (145KB)
3. Figure 2: Оценка

Скачать (134KB)
4. Figure 3: Оценка

Скачать (141KB)
5. Figure 4: Оценка

Скачать (152KB)
6. Figure 5: Доверительные полосы

Скачать (189KB)
7. Figure 6: Доверительные полосы

Скачать (179KB)
8. Figure 7: Доверительные полосы

Скачать (179KB)

© Абдушукуров А.А., Бозоров С.Б., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).