Modern Directions of Research in the Field of Recommender Systems
- Autores: Denisenko I.A.1
-
Afiliações:
- Financial University under the Government of the Russian Federation
- Edição: Volume 18, Nº 3 (2022)
- Páginas: 75-79
- Seção: Articles
- URL: https://journal-vniispk.ru/2541-8025/article/view/147099
- ID: 147099
Citar
Resumo
Palavras-chave
Texto integral
##article.viewOnOriginalSite##Sobre autores
Igor Denisenko
Financial University under the Government of the Russian Federation
Email: iadenisenko2020@edu.fa.ru
Postgraduate student, department of data analysis and machine learning Moscow, Russian Federation
Bibliografia
- Dacrema, M. F., Cremonesi, P., & Jannach, D. (2019). Are we really making much progress? A worrying analysis of recent neural recommendation approaches. Proceedings of the 13th ACM Conference on Recommender Systems. doi: 10.1145/3298689. (https://doi.org/10.1145/3298689.3347058)
- Ekstrand, M. D., Harper, F. M., Willemsen, M. C., & Konstan, J. A. (2014). User perception of differences in recommender algorithms. Proceedings of the 8th ACM Conference on Recommender Systems-RecSys ’14. doi: 10.1145/2645710.2645737 (https://doi.org/10.1145/2645710.2645737)
- Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix Recommender System. ACM Transactions on Management Information Systems, 6(4), 1-19. doi: 10.1145/2843948 (https://doi.org/10.1145/2843948)
- Gope, J., & Jain, S. K. (2017). A survey on solving cold start problem in recommender systems. 2017 International Conference on Computing, Communication and Automation (ICCCA). doi: 10.1109/CCAA.2017.8229786 (https://doi.org/10.1109/CCAA.2017.8229786)
- Gunning, D., & Aha, D. (2019). DARPA’s Explainable Artificial Intelligence (XAI) Program. AI Magazine, 40(2), 44-58. doi: 10.1609/aimag.v40i2.2850 (https://doi.org/10.1609/aimag.v40i2.2850)
- Jannach, D., Ludewig, M., & Lerche, L. (2017). Session-based item recommendation in e-commerce: on short-term intents, reminders, trends and discounts. User Modeling and User-Adapted Interaction, 27(3-5), 351-392. doi: 10.1007/s11257-017-9194-1 (https://doi.org/10.1007/s11257-017-9194-1)
- Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert Systems with Applications, 41(4), 2065-2073. doi: 10.1016/j.eswa.2013.09.005 (https://doi.org/10.1016/j.eswa.2013.09.005)
- Pan, W., Xiang, E., Liu, N., & Yang, Q. (2010). Transfer Learning in Collaborative Filtering for Sparsity Reduction. Proceedings of the AAAI Conference on Artificial Intelligence, 24(1), 230-235
- Rook, L., Sabic, A. & Zanker, M. (2020). Engagement in proactive recommendations. J.Intell. Inf. Syst. 54(1), 79-100
- Serrà, J., & Karatzoglou, A. (2017). Getting Deep Recommenders Fit. Proceedings of the Eleventh ACM Conference on Recommender Systems-RecSys ’17. doi: 10.1145/3109859.3109876 (https://doi.org/10.1145/3109859.3109876)
- Sun, Z., Yu, D., Fang, H., Yang, J., Qu, X., Zhang, J., & Geng, C. (2020). Are We Evaluating Rigorously? Benchmarking Recommendation for Reproducible Evaluation and Fair Comparison. Fourteenth ACM Conference on Recommender Systems. doi: 10.1145/3383313.3412489 (https://doi.org/10.1145/3383313.3412489)
- Zhang, Y., & Chen, X. (2020). Explainable Recommendation: A Survey and New Perspectives. Foundations and Trends® in Information Retrieval, 14(1), 1-101. doi: 10.1561/1500000066 (https://doi.org/10.1561/1500000066)
- Zhang, J., Adomavicius, G., Gupta, A., & Ketter, W. (2020). Consumption and Performance: Understanding Longitudinal Dynamics of Recommender Systems via an Agent-Based Simulation Framework. Information Systems Research, 31(1), 76-101. doi: 10.1287/isre.2019.0876 (https://doi.org/10.1287/isre.2019.0876)
Arquivos suplementares
