Modern Directions of Research in the Field of Recommender Systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The constant growth in the volume of content generated by electronic services has caused the problem of finding the necessary information in a limited time. Recommender systems are a useful tool that, among other things, solves the problem of speeding up the search for the necessary information. Web applications make extensive use of recommender systems to provide users with relevant content based on their preferences or interests, thus making it easier for users to access the information they seek. At the same time, the presence of a business effect from the introduction of such systems also shows the importance of their development and operation, but at the same time, the question of the degree of influence of algorithmic improvements in recommendation systems on target business metrics remains open. In various domains (recommendations of music, books, video content, product recommendations in online stores and marketplaces, etc.) various types of recommender systems are used, which are based on a wide range of technologies, including machine learning models and computational algorithms. The purpose of this work is to identify the main modern directions of research in the field of recommender systems, as well as a description of unsolved problems and challenges of the field.

Sobre autores

Igor Denisenko

Financial University under the Government of the Russian Federation

Email: iadenisenko2020@edu.fa.ru
Postgraduate student, department of data analysis and machine learning Moscow, Russian Federation

Bibliografia

  1. Dacrema, M. F., Cremonesi, P., & Jannach, D. (2019). Are we really making much progress? A worrying analysis of recent neural recommendation approaches. Proceedings of the 13th ACM Conference on Recommender Systems. doi: 10.1145/3298689. (https://doi.org/10.1145/3298689.3347058)
  2. Ekstrand, M. D., Harper, F. M., Willemsen, M. C., & Konstan, J. A. (2014). User perception of differences in recommender algorithms. Proceedings of the 8th ACM Conference on Recommender Systems-RecSys ’14. doi: 10.1145/2645710.2645737 (https://doi.org/10.1145/2645710.2645737)
  3. Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix Recommender System. ACM Transactions on Management Information Systems, 6(4), 1-19. doi: 10.1145/2843948 (https://doi.org/10.1145/2843948)
  4. Gope, J., & Jain, S. K. (2017). A survey on solving cold start problem in recommender systems. 2017 International Conference on Computing, Communication and Automation (ICCCA). doi: 10.1109/CCAA.2017.8229786 (https://doi.org/10.1109/CCAA.2017.8229786)
  5. Gunning, D., & Aha, D. (2019). DARPA’s Explainable Artificial Intelligence (XAI) Program. AI Magazine, 40(2), 44-58. doi: 10.1609/aimag.v40i2.2850 (https://doi.org/10.1609/aimag.v40i2.2850)
  6. Jannach, D., Ludewig, M., & Lerche, L. (2017). Session-based item recommendation in e-commerce: on short-term intents, reminders, trends and discounts. User Modeling and User-Adapted Interaction, 27(3-5), 351-392. doi: 10.1007/s11257-017-9194-1 (https://doi.org/10.1007/s11257-017-9194-1)
  7. Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert Systems with Applications, 41(4), 2065-2073. doi: 10.1016/j.eswa.2013.09.005 (https://doi.org/10.1016/j.eswa.2013.09.005)
  8. Pan, W., Xiang, E., Liu, N., & Yang, Q. (2010). Transfer Learning in Collaborative Filtering for Sparsity Reduction. Proceedings of the AAAI Conference on Artificial Intelligence, 24(1), 230-235
  9. Rook, L., Sabic, A. & Zanker, M. (2020). Engagement in proactive recommendations. J.Intell. Inf. Syst. 54(1), 79-100
  10. Serrà, J., & Karatzoglou, A. (2017). Getting Deep Recommenders Fit. Proceedings of the Eleventh ACM Conference on Recommender Systems-RecSys ’17. doi: 10.1145/3109859.3109876 (https://doi.org/10.1145/3109859.3109876)
  11. Sun, Z., Yu, D., Fang, H., Yang, J., Qu, X., Zhang, J., & Geng, C. (2020). Are We Evaluating Rigorously? Benchmarking Recommendation for Reproducible Evaluation and Fair Comparison. Fourteenth ACM Conference on Recommender Systems. doi: 10.1145/3383313.3412489 (https://doi.org/10.1145/3383313.3412489)
  12. Zhang, Y., & Chen, X. (2020). Explainable Recommendation: A Survey and New Perspectives. Foundations and Trends® in Information Retrieval, 14(1), 1-101. doi: 10.1561/1500000066 (https://doi.org/10.1561/1500000066)
  13. Zhang, J., Adomavicius, G., Gupta, A., & Ketter, W. (2020). Consumption and Performance: Understanding Longitudinal Dynamics of Recommender Systems via an Agent-Based Simulation Framework. Information Systems Research, 31(1), 76-101. doi: 10.1287/isre.2019.0876 (https://doi.org/10.1287/isre.2019.0876)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».