Algoritms for determining the attitude position of an unmanned aerial vehicle relative to the landing platform by using computer vision


如何引用文章

全文:

详细

Algorithms for determining the attitude position of an aircraft or helicopter-type unmanned aerial vehicle relative to the landing platform with special optical marks are considered. An assessment is made of the possibility of calculating the angular position, height and distance to the landing platform in real time based on image processing by a separate on-board processor combined with a digital optical camera into a single measuring unit. The results of calculating the aircraft attitude relative to the landing platform moving along a program trajectory using computer vision algorithms are presented. Simulation of the process of recognizing optical marks on a moving platform from a moving aircraft confirmed that using a processor with a program for recognizing and identifying optical marks by using  computer vision and algorithms for calculating the position of the aircraft relative to landing platforms can assuredly provide reliable information about the positioning of an unmanned aerial vehicle relative to the landing platform in real time and can be used in conjunction with other navigation aids (or independently) to ensure accurate landing of unmanned aircraft.

作者简介

T. Gainutdinova

Kazan National Research Technical University named after A.N. Tupolev

编辑信件的主要联系方式.
Email: tgainut@mail.ru

Candidate of Science (Engineering), Associate Professor of the Department of Construction and Design of Aircraft

俄罗斯联邦

S. Novikova

Kazan National Research Technical University named after A.N. Tupolev

Email: sweta72@bk.ru

Doctor of Science (Engineering), Professor of the Department of Construction and Design of Aircraft

俄罗斯联邦

V. Gainutdinov

Kazan National Research Technical University named after A.N. Tupolev

Email: gainut@mail.ru

Doctor of Science (Engineering), Professor, Head of the Department of Construction and Design of Aircraft

俄罗斯联邦

M. Trusfus

Kazan National Research Technical University named after A.N. Tupolev

Email: mtrusfus@yandex.ru

Engineer, Department of Construction and Design of Aircraft

俄罗斯联邦

V. Litvin

Kazan National Research Technical University named after A.N. Tupolev

Email: litwin@mail.ru

Engineer, Department of Construction and Design of Aircraft

俄罗斯联邦

参考

  1. Sanchez-Lopez J.L., Pestana J., Saripalli S., Campoy P. An approach toward visual autonomous ship board landing of a VTOL UAV. Journal of Intelligent & Robotic Systems. 2014. V. 74. P. 113-127. doi: 10.1007/s10846-013-9926-3
  2. Xu G., Zhang Y., Ji S., Cheng Y., Tian Y. Research on computer vision-based for UAV autonomous landing on a ship. Pattern Recognition Letters. 2009. V. 30, Iss. 6. P. 600-605. doi: 10.1016/j.patrec.2008.12.011
  3. Truong Q.H., Rakotomamonjy T., Taghizad A., Biannic J.-M. Vision-based control for helicopter ship landing with handling qualities constraints. IFAC-PapersOnLine. 2016. V. 49, Iss. 17. P. 118-123. doi: 10.1016/j.ifacol.2016.09.021
  4. Holmes W.K., Langelaan J.W. Autonomous ship-board landing using monocular vision. Proceedings of the AHS 72th Annual Forum (May, 17-19, 2016, West Palm Beach, Florida). V. 2.
  5. Meng Y., Wang W., Han H., Ban J. A visual/inertial integrated landing guidance method for UAV landing on the ship. Aerospace Science and Technology. 2019. V. 85. P. 474-480. doi: 10.1016/j.ast.2018.12.030
  6. Yakimenko O.A., Kaminer I.I., Lentz W.J., Ghyzel P.A. Unmanned aircraft navigation for shipboard landing using infrared vision. IEEE Transactions on Aerospace and Electronic Systems. 2002. V. 38, Iss. 4. P. 1181-1200. doi: 10.1109/taes.2002.1145742
  7. Ageev A.M., Bondarev V.G., Protsenko V.V. Justification of the choice of radiation sources for a computer vision system in the problem of automatic landing of unmanned aerial vehicles. Computer Optics. 2022. V. 46, no. 2. P. 239-245. (In Russ.). doi: 10.18287/2412-6179-CO-875
  8. Lumsden B., Wilkinson C., Padfield G. Challenges at the helicopter-ship dynamic interface. 24th European Rotorcraft Forum (September, 15-17, 1998, Marseilles, France).
  9. Colwell J. Maritime helicopter ship motion criteria. Challenges for operational guidance. Available at: http://resolver.tudelft.nl/uuid:01b52b50-e242-457d-854d-907b5e04faf1
  10. Stingl A.L. Vtol aircraft flight system. US Patent, no. 3473232, 1969. (Publ. 21.10.1969)
  11. MPP-02 V. I. Helicopter operations from ships other than aircraft carriers (HOSTAC). NATO, 2017.
  12. Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (June, 23-28, 2014, Columbus, OH, USA). doi: 10.1109/cvpr.2014.81
  13. Girshick R. Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision (December, 07-13, 2015, Santiago, Chile). doi: 10.1109/iccv.2015.169
  14. Ren S., He K., Girshick R., Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017. V. 39, Iss. 6. P. 1137-1149. doi: 10.1109/tpami.2016.2577031
  15. Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., Berg A.C. SSD: Single shot multibox detector. Lecture Notes in Computer Science. 2016. V. 9905. P. 21-37. doi: 10.1007/978-3-319-46448-0_2
  16. Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (June, 27-30, 2016, Las Vegas, NV, USA). doi: 10.1109/cvpr.2016.91
  17. Redmon J., Farhadi A. YOLO9000: better, faster, stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (July, 21-26, 2017, Honolulu, HI, USA). doi: 10.1109/cvpr.2017.690
  18. Redmon J., Farhadi A. Yolov 3: An incremental improvement. Tech. report, arXiv: 1804.02767 [cs.CV], 2018. doi: 10.48550/arXiv.1804.02767
  19. Benjdira B., Khursheed T., Koubaa A., Ammar A., Ouni K. Car detection using unmanned aerial vehicles: Comparison between faster R-CNN and YOLOv3. 1st International Conference on Unmanned Vehicle Systems-Oman (UVS) (February, 05-07, 2019, Muscat, Oman). doi: 10.1109/uvs.2019.8658300
  20. Zishan W., Shunliang P., Zishan S., Weiqun S. Computer vision scheme for autonomous landing of unmanned helicopter on ship deck. Journal of Beijing University of Aeronautics and Astronautics. 2007. V. 33, Iss. 6.
  21. Wang X.-J., Pan S.-L., Song Z.-S., Shen W.-Q. Vision based analytic 3D measurement algorithm for the autonomous landing of unmanned helicopter on ship deck. Optical Technique. 2007. V. 33. P. 264-267.
  22. Sharp C.S., Shakernia O., Sastry S.S. A vision system for landing an unmanned aerial vehicle. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2001) (May, 21-26, 2001, Seoul, Korea (South)). doi: 10.1109/robot.2001.932859
  23. Shiqing L., Chunhua H., Jihong Z. A Method for estimating position and orientation of an unmanned helicopter based on vanishing line information. Computer Engineering and Applications. 2004. V. 9.
  24. Lukyanov O.E., Zolotov D.V., Espinosa Barsenas O.U., Komarov V.A. Determining aerodynamic characteristics of small unmanned aerial vehicles involving flight experiment. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2023. V. 22, no. 3. P. 59-74. (In Russ.). doi: 10.18287/2541-7533-2023-22-3-59-74
  25. Tapia E. A note on the computation of high-dimensional integral images. Pattern Recognition Letters. 2011. V. 32, Iss. 2. P. 197-201. doi: 10.1016/j.patrec.2010.10.007
  26. Jähne B., Scharr H., Körkel S. Principles of filter design. Handbook of Computer Vision and Applications. V. 2. Signal Processing and Pattern Recognition. Academic Press, 1999. P. 125-151.
  27. Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986. V. 8, Iss. 6. P. 679-698. doi: 10.1109/tpami.1986.4767851
  28. Gainutdinova T.Yu., Gainutdinov V.G., Latypov R.R., Mukhametzianov F.F. Sposob tochnoy posadki bespilotnogo letatel'nogo apparata i ustroystvo dlya realizatsii sposoba [Method for accurate landing of an unmanned aerial vehicle and device for implementing the method]. Patent RF, no. 2773978, 2022. (Publ. 14.06.2022, bull. no. 17)

补充文件

附件文件
动作
1. JATS XML

版权所有 © VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2023

Creative Commons License
此作品已接受知识共享署名-相同方式共享 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».