Assessment of cryogenic energy storage systems efficiency
- Авторлар: Blagin E.V.1, Uglanov D.A.1
-
Мекемелер:
- Samara National Research University
- Шығарылым: Том 24, № 2 (2025)
- Беттер: 109-123
- Бөлім: MECHANICAL ENGINEERING
- URL: https://journal-vniispk.ru/2542-0453/article/view/311526
- DOI: https://doi.org/10.18287/2541-7533-2025-24-2-109-123
- ID: 311526
Дәйексөз келтіру
Толық мәтін
Аннотация
This study evaluates the efficiency of cryogenic energy storage systems from energy, exergy, and economic perspectives. Cryogenic energy storage systems that store energy through gas liquefaction and regasification, offer high energy capacity but face challenges in storage efficiency. The authors propose a comprehensive performance indicator that integrates these factors, addressing limitations of traditional metrics like the round-trip efficiency, which fails to account for external heat/cold sources. Analysis of 30 installations reveals that systems utilizing compression heat and cryogenic cold achieve up to 70% efficiency, while those relying solely on electricity average 25%. Key findings highlight the trade-offs between energy density, cost, and thermodynamic perfection, with advanced configurations (e.g., hybrid systems with LNG cold recovery) achieving round-trip efficiency more than 100% but lower exergy efficiency (10.4%). A novel composite metric balances , exergy efficiency, and specific energy capacity, identifying optimal designs. The study concludes that integrating auxiliary heat/cold storage and external energy sources (e.g., geothermal, LNG) enhances performance, though practical constraints like regenerative heat exchanger stability persist.
Авторлар туралы
E. Blagin
Samara National Research University
Хат алмасуға жауапты Автор.
Email: blagin.ev@ssau.ru
ORCID iD: 0000-0002-8921-4122
Candidate of Science (Engineering), Associate Professor of the Heat Engineering Department
РесейD. Uglanov
Samara National Research University
Email: uglanov.da@ssau.ru
Doctor of Science (Engineering), Professor of the Heat Engineering Department
РесейӘдебиет тізімі
- Smith E.M. Storage of electrical energy using supercritical liquid air. Proceedings of the Institution of Mechanical Engineers. 1977. V. 191, Iss. 1. P. 289-298. doi: 10.1243/pime_proc_1977_191_035_02
- Morgan R., Nelmes S., Gibson E., Brett G. Liquid air energy storage – Analysis and first results from a pilot scale demonstration plant. Applied Energy. 2015. V. 137. P. 845-853. doi: 10.1016/j.apenergy.2014.07.109
- Li Y., Cao H., Wang S., Jin Y., Li D., Wang X., Ding Y. Load shifting of nuclear power plants using cryogenic energy storage. Applied Energy. 2014. V. 113. P. 1710-1716. doi: 10.1016/j.apenergy.2013.08.077
- Guizzi G., Manno M., Tolomei L., Vitali R. Thermodynamic analysis of a liquid air energy storage system. Energy. 2015. V. 93. P. 1639-1647. doi: 10.1016/j.energy.2015.10.030
- She X., Li Y., Peng X., Ding Y. Theoretical analysis on performance enhancement of stand-alone liquid air energy storage from perspective of energy storage and heat transfer. Energy Procedia. 2017. V. 142. P. 3498-3504. doi: 10.1016/j.egypro.2017.12.236
- Lee I., Park J., Moon I. Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: Cold and power integration. Energy. 2017. V. 140. P. 106-115. doi: 10.1016/j.energy.2017.08.054
- Gökçeer T., Demirkaya G., Padilla R.V. Thermoeconomic analysis of liquid air energy storage system. Proceedings of the ASME 2017 11th International Conference on Energy Sustainability (June, 26-30, 2017, Charlotte, North Carolina, USA). doi: 10.1115/ES2017-3370
- Kim J., Noh Y., Chang D. Storage system for distributed-energy generation using liquid air combined with liquefied natural gas. Applied Energy. 2018. V. 212. P. 1417-1432. doi: 10.1016/j.apenergy.2017.12.092
- Hamdy S., Morosuk T., Tsatsaronis G. Cryogenics-based energy storage: Evaluation of cold exergy recovery cycles. Energy. 2017. V. 138. P. 1069-1080. doi: 10.1016/j.energy.2017.07.118
- Hamdy S., Morosuk T., Tsatsaronis G. Exergoeconomic optimization of an adiabatic cryogenics-based energy storage system. Energy. 2019. V. 183. P. 812-824. doi: 10.1016/j.energy.2019.06.176
- Sciacovelli A., Vecchi A., Ding Y. Liquid air energy storage (LAES) with packed bed cold thermal storage – From component to system level performance through dynamic modelling. Applied Energy. 2017. V. 190. P. 84-98. doi: 10.1016/j.apenergy.2016.12.118
- Peng H., Shan X., Yang Y., Ling X. A study on performance of a liquid air energy storage system with packed bed units. Applied Energy. 2018. V. 211. P. 126-135. doi: 10.1016/j.apenergy.2017.11.045
- Lin X., Wang L., Xie N., Li G., Chen H. Thermodynamic analysis of the cascaded packed bed cryogenic storage based supercritical air energy storage system. Energy Procedia. 2019. V. 158. P. 5079-5085. doi: 10.1016/j.egypro.2019.01.639
- She X., Peng X., Nie B., Leng G., Zhang X., Weng L., Tong L., Zheng L., Wang L., Ding Y. Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression. Applied Energy. 2017. V. 206. P. 1632-1642. doi: 10.1016/j.apenergy.2017.09.102
- Peng X., She X., Cong L., Zhang T., Li C., Li Y., Wang L., Tong L., Ding Y. Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage. Applied Energy. 2018. V. 221. P. 86-99. doi: 10.1016/j.apenergy.2018.03.151
- Krawczyk P., Szabłowski Ł., Karellas S., Kakaras E., Badyda K. Comparative thermodynamic analysis of compressed air and liquid air energy storage systems. Energy. 2018. V. 142. P. 46-54. doi: 10.1016/j.energy.2017.07.078
- Zhang T., Chen L., Zhang X., Mei S., Xue X., Zhou Y. Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy. Energy. 2018. V. 155. P. 641-650. doi: 10.1016/j.energy.2018.05.041
- Cetin T., Kanoglu M., Yanikomer N. Cryogenic energy storage powered by geothermal energy. Geothermics. 2019. V. 77. P. 34-40. doi: 10.1016/j.geothermics.2018.08.005
- Zhang T., Zhang X., Xue X., Wang G., Mei S. Thermodynamic analysis of a hybrid power system combining Kalina cycle with liquid air energy storage. Entropy. 2019. V. 21, Iss. 3. doi: 10.3390/e21030220
- Liu Y., Tan H. Preliminary study on a new cryogenic energy storage system based on natural gas liquefaction. Proceedings of the 14th IEEE Conference on Industrial Electronics and Applications, ICIEA (June, 19-21, 2019, Xi'an, China). 2019. P. 483-487. doi: 10.1109/ICIEA.2019.8833884
- She X., Wang H., Zhang T., Li Y., Zhao X., Ding Y., Wang C. Liquid air energy storage – A critical review. Renewable and Sustainable Energy Reviews. 2025. V. 208. doi: 10.1016/j.rser.2024.114986
- Fang Z., Pan Z., Ma G., Yu J., Shang L., Zhang Z. Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery. Energy. 2023. V. 269. doi: 10.1016/j.energy.2023.126752
- Abdolalipouradl M., Khalilarya S., Jafarmadar S. Exergoeconomic analysis of a novel integrated transcritical CO2 and Kalina 11 cycles from Sabalan geothermal power plant. Energy Conversion and Management. 2019. V. 195. P. 420-435. doi: 10.1016/j.enconman.2019.05.027
- Peng X., She X., Li C., Luo Y., Zhang T., Li Y., Ding Y. Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction. Applied Energy. 2019. V. 250. P. 1190-1201. doi: 10.1016/j.apenergy.2019.05.040
- She X., Zhang T., Cong L., Peng X., Li C., Luo Y., Ding Y. Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement. Applied Energy. 2019. V. 251. doi: 10.1016/j.apenergy.2019.113355
- Xu M., Zhao P., Huo Y., Han J., Wang J., Dai Y. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system. Journal of Cleaner Production. 2020. V. 242. doi: 10.1016/j.jclepro.2019.118437
- Park J., You F., Cho H., Lee I., Moon I. Novel massive thermal energy storage system for liquefied natural gas cold energy recovery. Energy. 2020. V. 195. doi: 10.1016/j.energy.2020.117022
- Zhang Y., Yao E., Zhang X., Yang K. Thermodynamic analysis of a novel compressed carbon dioxide energy storage system with low‐temperature thermal storage. International Journal of Energy Research. 2020. V. 44, Iss. 8. P. 6531-6554. doi: 10.1002/er.5387
- Qi M., Park J., Kim J., Lee I., Moon I. Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation. Applied Energy. 2020. V. 269. doi: 10.1016/j.apenergy.2020.115049
- Cetin T., Kanoglu M., Bedir F. Integration of cryogenic energy storage and cryogenic organic cycle to geothermal power plants. Geothermics. 2020. V. 87. doi: 10.1016/j.geothermics.2020.101830
- Wang C., Akkurt N., Zhang X., Luo Y., She X. Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating. Applied Energy. 2020. V. 275. doi: 10.1016/j.apenergy.2020.115392
- Park J., Cho S., Qi M., Noh W., Lee I., Moon I. Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility. Energy. 2021. V. 216. doi: 10.1016/j.energy.2020.119308
- Liu Q., He Z., Liu Y., He Y. Thermodynamic and parametric analyses of a thermoelectric generator in a liquid air energy storage system. Energy Conversion and Management. 2021. V. 237. doi: 10.1016/j.enconman.2021.114117
Қосымша файлдар
