Assessment of the influence of turbulators in the neck of a low frequency resonator on its acoustic characteristics


如何引用文章

全文:

详细

The work considers low-frequency resonators with an extended neck and turbulators of different sizes, that make up a set of additional faces located on the inner surface of the resonator neck. The main goal of the work is to assess how strongly these structural elements influence the turbulization of the flow when a wave with a high sound pressure level falls on the resonator and, thereby, the dissipation of sound energy by the resonator. The studies were carried out under conditions of wave incidence normal to the front surface of the resonator. A qualitative assessment was carried out on the basis of numerical simulation of physical processes in a non-stationary formulation in an axisymmetric resonator. Quantitative assessment was based on full-scale measurements of resonators with turbulators of different sizes in a normal incidence impedance tube. The obtained results showed that for the considered variants of turbulators, an increase in their size leads to an increase in the total vorticity of the flows, and also increases the sound absorption coefficient.

作者简介

O. Kustov

Perm National Research Polytechnic University

编辑信件的主要联系方式.
Email: kustovou@yandex.ru
ORCID iD: 0000-0003-1371-5331

Candidate of Science (Engineering), Associate Professor, Department of Rocket and Space Engineering and Power Generating Systems

俄罗斯联邦

V. Palchikovskiy

Perm National Research Polytechnic University

Email: vvpal@bk.ru

Candidate of Science (Engineering), Associate Professor, Department of Rocket and Space Engineering and Power Generating Systems

俄罗斯联邦

I. Khramtsov

Perm National Research Polytechnic University

Email: igorhrs92@mail.ru

Candidate of Science (Engineering), Associate Professor, Department of Rocket and Space Engineering and Power Generating Systems

俄罗斯联邦

A. Kuznetsov

Perm National Research Polytechnic University

Email: sasha5352@yandex.ru
ORCID iD: 0000-0002-5231-6598

Assistant Professor, Department of Rocket and Space Engineering and Power Generating Systems

俄罗斯联邦

参考

  1. Ingard U. On the theory and design of acoustic resonators. The Journal of the Acoustical Society of America. 1953. V. 25, Iss. 6. P. 1037-1061. doi: 10.1121/1.1907235
  2. Sugimoto R., Astley J., Murray P. Low frequency liners for turbofan engines. Proceedings of 20th International Congress on Acoustics (August, 23-27, 2010, Sydney, Australia).
  3. Tang S.K., Ng C.H., Lam E.Y.L. Experimental investigation of the sound absorption performance of compartmented Helmholtz resonators. Applied Acoustics. 2012. V. 73, Iss. 9. P. 969-976. doi: 10.1016/j.apacoust.2012.03.016
  4. Al Jahdali R., Wu Y. Coupled resonators for sound trapping and absorption. Scientific Reports. 2018. V. 8. doi: 10.1038/s41598-018-32135-5
  5. Selamet A., Lee I. Helmholtz resonator with extended neck. Journal of the Acoustical Society of America. 2003 V. 113, Iss. 4. P. 1975-1985. doi: 10.1121/1.1558379
  6. Li D.K., Chang D.Q., Liu B.L. Enhancing the low frequency sound absorption of a perforated panel by parallel-arranged extended tubes. Applied Acoustics. 2016. V. 102. P. 126-132. doi: 10.1016/j.apacoust.2015.10.001
  7. Huang S., Fang X., Wang X., Assouar B., Cheng Q., Li Y. Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. Journal of the Acoustical Society of America. 2019. V. 145, Iss. 1. P. 254-262. doi: 10.1121/1.5087128
  8. Yang C., Zhang P., Sack S., Abom M. Low frequency duct noise control using extended tube liners. AIAA Aviation 2020 Forum (June, 15-19, 2020, Virtual). 2020. doi: 10.2514/6.2020-2615
  9. Gautam A., Celik A., Azarpeyvand M. An investigation on neck extensions for single and multidegree of freedom acoustic Helmholtz resonators. AIAA Aviation 2021 Forum (August, 2-6, 2021, Virtual). 2021. doi: 10.2514/6.2021-2206
  10. Papadakis N.M., Stavroulakis G.E. Tunable Helmholtz resonators using multiple necks. Micromachines. 2023. V. 14, Iss. 10. doi: 10.3390/mi14101932
  11. ISO 10534-2; Acoustics – Determination of Sound Absorption Coefficient and Impedance in Impedances Tubes. Part 2: Transfer Function Method. ISO: Geneva, Switzerland, 1996.
  12. Kustov O.Yu., Khramtsov I.V. Otsenka tochnosti opredeleniya akusticheskikh kharakteristik obraztsov rezonansnykh ZPK pri ikh eksperimental'nykh issledovaniyakh. Materialy Pyatoy Vserossiyskoy Konferentsii Molodykh Uchenykh i Spetsialistov «Akustika Sredy Obitaniya (ASO-2020)» (April, 24, 2020, Moscow). Moscow: Bauman Moscow State Technical Universityt, 2020. P. 123-130. (In Russ.)
  13. Khramtsov I.V., Kustov O.Y., Palchikovskiy V.V. Determination of acoustic characteristics of full-scale sample of single-layered honeycomb liner based on numerical simulation. Akustika. 2019. V. 32. P. 182-188. doi: 10.36336/akustika201932182
  14. Kustov O.Yu., Alikin D.S., Popova E.A., Yusupova D.R. Comparison of technologies of additive and industrial production of test samples of sound-absorbing structures of aircraft engines. Dnevnik Nauki. 2022. No. 3 (63). (In Russ.)
  15. Kustov O.Yu., Palchikovskiy V.V. Interferometr dlya vysokikh urovney akusticheskogo davleniya. Materialy XVI Vserossiyskoy Nauchno-Tekhnicheskoy Konferentsii «Aerokosmicheskaya Tekhnika, Vysokie Tekhnologii i Innovatsii - 2015» (November, 17-18, 2015, Perm). Perm: Perm National Research Polytechnic University Publ., 2015. P. 157-160. (In Russ.)
  16. Anoshkin A.N., Zakharov A.G., Gorodkova N.A., Chursin V.A. Computational and experimental studies of resonance sound-absorbing multilayer structures. PNRPU Mechanics Bulletin. 2015. No. 1. P. 5-20. (In Russ.). doi: 10.15593/perm.mech/2015.1.01
  17. Kustov O.Yu. Influence of geometric errors on acoustical characteristics of the liner samples produced by 3D-printing technology. Scientific and Technical Volga Region Bulletin. 2018. No. 8. P. 21-23. (In Russ.)

补充文件

附件文件
动作
1. JATS XML

版权所有 © VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2025

Creative Commons License
此作品已接受知识共享署名-相同方式共享 4.0国际许可协议的许可

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).