Foreign migrants in the Moscow agglomeration: spatial and temporal analysis based on data from mobile operators

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article analyzes the modern ethnic landscape of the Moscow agglomeration on the basis of data from mobile operators. The estimation of the number of foreign migrants and its monthly dynamics from October 2021 to October 2022 is made. The main areas of residence of foreigners have been identified, the ethnic diversity of municipalities has been assessed, and the main types of settlement pattern of national-ethnic communities have been identified. The study showed that the total number of foreign migrants in the agglomeration reaches 1.8 million people or 9% of the total population, remaining almost unchanged in spite of events of 2022, including the special military operation. The share of foreigners is minimal in ZATO (below 3%), it is also insignificant in the far suburbs of Moscow and in expensive districts of the capital city. At the same time, the threshold of 17% (the so-called “boiling point”, reflecting a sharp increase in the risks of interethnic conflicts and ghettoization of urban space) was overcome by 8 municipalities in the agglomeration. The two most noticeable areas of increased concentration of foreign migrants are identified in the south-east at the junction of Moscow and Moscow region (Lublino – Kotelniki) and in New Moscow (Mosrentgen – Sosenskoye). The calculation of the Ekkel ethnic mosaic index confirmed the presence of pronounced interethnic contact zones here. Increased index values were also noted in most central and southwest districts of Moscow, which, with a smaller proportion of foreigners living, are associated with a high density of offices, diplomatic institutions and universities. Three types of settlement patterns of national-ethnic groups of migrants, determined by the adaptive capabilities of ethnic communities, were revealed. Diffuse and relatively uniform settlement pattern is characteristic for both the most massive ethnic groups (citizens of Tajikistan, Uzbekistan and Kyrgyzstan) and the most culturally close to the local population (citizens of Ukraine and Belarus). Concentric settlement pattern (in residential areas of Moscow and satellite cities) is typical for relatively large ethnic groups coming from post-Soviet countries (citizens of Azerbaijan, Armenia, Georgia). The local settlement pattern is typical for small ethnic communities that gravitate to specific districts of the capital city.

Full Text

Restricted Access

About the authors

R. А. Babkin

Plekhanov Russian University of Economics; Research Institute of Labor of the Ministry of Labor of Russia

Author for correspondence.
Email: babkin_ra@mail.ru
Russian Federation, Moscow; Moscow

A. G. Makhrova

Lomonosov Moscow State University

Email: almah@mail.ru
Russian Federation, Moscow

D. M. Medvednikova

Lomonosov Moscow State University; The Russian Presidential Academy of National Economy and Public Administration

Email: darina.medvednikova@yandex.ru
Russian Federation, Moscow; Moscow

References

  1. Allen J., Farber S., Greaves S., Clifton G., Wu H., Sarkar H., Levinson D. Immigrant settlement patterns, transit accessibility, and transit use. J. Transp. Geogr., 2021, no. 96, pp. 103–187. https://doi.org/10.1016/j.jtrangeo.2021.103187
  2. Andreeva A.S., Ivanova N.S., Varshaver E.A. Does Kotelniki qualify as an ethnic and migrant enclave? A case-study of residents’ ethnic and migration origins in Kotelniki, a Moscow satellite city. Gorod. Issled. Pract., 2020, no. 5, pp. 54–72. (In Russ.).
  3. Arbaci S., Malheiros J. De-segregation, peripheralisation and the social exclusion of immigrants: Southern European cities in the 1990s. J. Ethn. Migr. Stud., 2010, vol. 36, no. 2, pp. 227–255.
  4. Avdashkin A.A. “Chinese” market in the space of a Russian city (the case of Chelyabinsk). Vestn. Arkh. Antrop. Etnogr., 2020, no. 2, pp. 147–156. (In Russ.).
  5. Axenov K.E. Social segregation of private activity spaces in posttransformational metropolis (by the example of Saint-Petersburg). Izv. RGO, 2009, vol. 141, no. 1, pp. 9–20. (In Russ.).
  6. Bajardi P., Delfino M., Panisson A., Petri G., Tizzoni M. Unveiling patterns of international communities in a global city using mobile phone data. Data Sci., 2015, no. 4, pp. 1–17.
  7. Baranova V.V., Fedorova K.S. (In)visibility and (non)existence: Labor migrants and the St. Petersburg linguistic landscape. Gorod. Issled. Pract., 2017, vol. 2, no. 1, pp. 103–121. (In Russ.). https://doi.org/10.17323/usp212017103-121
  8. Benassi F., Bonifazi C., Heins F., Lipizzi F., Strozza S. Comparing residential segregation of migrant populations in selected European urban and metropolitan areas. Spat. Demogr., 2020, vol. 8, pp. 269–290. https://doi.org/10.1007/s40980-020-00064-5
  9. Bertoli S., Ozden C., Packard M. Segregation and internal mobility of Syrian refugees in Turkey: Evidence from mobile phone data. J. Dev. Econ., 2021, vol. 152, pp. 1–17. https://doi.org/10.1016/j.jdeveco.2021.102704
  10. Bolt G., Phillips D., Van Kempen R. Housing policy. (De)segregation and social mixing. Hous. Stud., 2010, vol. 25, no. 2, pp. 129–135. https://doi.org/10.1080/02673030903564838
  11. Catney G. The complex geographies of ethnic residential segregation: Using spatial and local measures to explore scale-dependency and spatial relationships. Trans. Inst. Br. Geogr., 2018, vol. 43, no. 1, pp. 137–152. https://doi.org/10.1111/tran.12209
  12. Demintseva E. Labour migrants in post-Soviet Moscow: Patterns of settlement. J. Ethn. Migr. Stud., 2017, vol. 43, no. 15, pp. 2556–2572. https://doi.org/10.1080/1369183X.2017.1294053
  13. Ekkel’ B.M. Calculation of a mosaic index for the ethnic composition of republics, krais, and oblasts of the USSR. Sov. Sociol., 1979, vol. 18, no. 1, pp. 47–63. (In Russ.).
  14. Ermakova M.A., Varshaver E.A., Ivanova N.S. Features of settlement and integration of migrants in Moscow and the Moscow Region. Vestn. RUDN, Ser.: Sociol., 2020, vol. 20, no. 2, pp. 363–381. (In Russ.). https://doi.org/10.22363/2313-2272-2020-20-2-363-381
  15. Erokhina E.A. Interethnic communities: the problem of attribution. Sibir. Philosoph. Zh., 2017, vol. 15, no. 4, pp. 173–182. (In Russ.).
  16. Gladwell M. The tipping point. How little things can make a big difference. New York: Little, Brawn and Co., 2002.
  17. Järv O., Masso A., Silm S., Ahas R. The link between ethnic segregation and socio-economic status: An activity space approach. Tijdschr. Econ. Soc. Geogr., 2020, vol. 112, no. 3, pp. 1–17. https://doi.org/10.1111/tesg.12465
  18. Karachurina L.B., Mkrtchyan N.V., Savoskul M.S. New data and traditional approaches: How Russian geographers study population migration (2010–2021). Izv. Akad. Nauk, Ser. Geogr., 2022, vol. 86, no. 3, pp. 353–373. (In Russ.). https://doi.org/10.31857/S2587556622030074
  19. Kashnitsky I., Gunko M. Spatial variation of in-migration to Moscow: Testing the effect of housing market. Cities, 2016, no. 59, pp. 30–39. https://doi.org/10.1016/j.cities.2016.05.025
  20. Lai S., Erbach-Schoenberg E., Pezzulo C., Ruktanonchai N.W., Sorichetta A., Steele J., Li T., Dooley C.A., Tatem A.J. Exploring the use of mobile phone data for national migration statistics. Palgrave Commun., 2019, vol. 5, no. 1, pp. 1–10. https://doi.org/10.1057/s41599-019-0242-9
  21. Levinson A.G. Fluid and immobile in the Moscow periphery. In Arkheologiya periferii [Archaeology of the Periphery]. Grigoryan Yu., Ed. Moscow: MUF Publ., 2013, pp. 315–342. (In Russ.).
  22. Luca M., Barlacchi G., Oliver N., Lepri B. Leveraging mobile phone data for migration flows. In Data Science for Migration and Mobility. Korkmaz E.E., Salah A.A., Eds. Oxford: Oxford Univ. Press, 2022, pp. 1–14. https://doi.org/10.1109/ACCESS.2019.2952911
  23. Makhrova A.G., Golubchikov O.Yu. Russian town under capitalism: Social transformation of intraurban space. Vestn. Mosk. Univ., Ser. 5: Geogr., 2012, no. 2, pp. 26–31. (In Russ.).
  24. Manakov A.G. Dynamics of ethnic fractionalization of territories in North-West Russia in 1897–2010. Reg. Issled., 2016, no. 2, pp. 72–83. (In Russ.).
  25. Moya-Gomez B., Stepniak M., García-Palomares J.C., Frias-Martinez E., Gutierrez J. Exploring night and day socio-spatial segregation based on mobile phone data: The case of Medellin (Colombia). Comput. Environ. Urban Syst., 2021, no. 89, pp. 1–12. https://doi.org/10.1016/j.compenvurbsys.2021.101675
  26. Shekera E.A. Dagestan youth in Saint Petersburg: Social map of resettlement. Diskurs, 2020, vol. 6, no. 3, pp. 94–108. (In Russ.). https://doi.org/10.32603/2412-8562-2020-6-3-94-108
  27. Silm S., Ahas R. The temporal variation of ethnic segregation in a city: Evidence from a mobile phone use dataset. Soc. Sci. Res., 2014, no. 47, pp. 30–43.
  28. Varshaver E.E., Rocheva A.L., Ivanova N.S. Factors and mechanisms of the formation of migrant residential concentration areas around markets. Monitor. Obsch. Mnen.: Econ. Soc. Peremeny, 2021, no. 5, pp. 425–449. (In Russ.). https://doi.org/10.14515/monitoring.2021.5.1939
  29. Varshaver E.E., Rocheva A.L., Ivanova N.S., Andreeva A.S. Migrants’ settlement patterns in global cities and their determinants: Paris, Singapore, Sydney, and Moscow. Part I. Monitor. Obsch. Mnen.: Econ. Soc. Peremeny, 2019, no. 6, pp. 479–504. (In Russ.). https://doi.org/10.14515/monitoring.2019.6.25
  30. Varshaver E.E., Rocheva A.L., Ivanova N.S., Andreeva A.S. Migrants’ settlement patterns in global cities and their determinants: Paris, Singapore, Sydney, and Moscow. Part II. Monitor. Obsch. Mnen.: Econ. Soc. Peremeny, 2020, no. 2, pp. 457–485. (In Russ.). https://doi.org/10.14515/monitoring.2020.2.1640
  31. Varshaver E.E., Rocheva A.L., Ivanova N.S., Ermakova M.V. Residential concentrations of migrants in Russian cities: Is there a pattern? Sociol. Obozr., 2020, vol. 19, no. 2, pp. 225–253. (In Russ.).
  32. Vendina O.I. Cultural diversity and “side effects” of ethno-cultural policy in Moscow. In Immigranty v Moskve [Immigrants in Moscow]. Zaionchkovskaya Zh.A., Ed. Moscow: Tri kvadrata Publ., 2009, pp. 45–148. (In Russ.).
  33. Vendina O.I. Migrants in Moscow: is ethnic segregation threatening the Russian capital? In Migratsionnaya situatsiya v regionakh Rossii. Vyp. 3 [The Migration Situation in the Regions of Russia. Vol. 3]. Moscow: Tsentr Migratsionnykh Issledovanii, 2005. 88 p. (In Russ.).
  34. Vendina O.I., Panin A.N., Tikunov V.S. Social space of Moscow: Peculiarities and patterns. Izv. Akad. Nauk, Ser. Geogr., 2019, no. 6, pp. 3–17. (In Russ.). https://doi.org/10.31857/S2587-5566201963-17

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of the number of foreigners permanently residing in the Moscow region, October 2021 – October 2022.

Download (251KB)
3. Fig. 2. Share of migrants in the population of municipalities of Moscow and the Moscow region, October 2021 – October 2022 The numbers on the maps indicate districts by administrative districts of Old Moscow (I), settlements by administrative districts of New Moscow (II) and urban districts of the Moscow region (III). I. Old Moscow: Zelenograd Administrative Okrug (ZelAO): 1 - Kryukovo, 2 - Matushkino, 3 - Savelki, 4 - Silino, 5 - Staroye Kryukovo; Central Administrative Okrug (CAD): 1 - Arbat, 2 - Basmanny, 3 - Zamoskvorechye, 4 - Krasnoselsky, 5 - Meshchansky, 6 - Presnensky, 7 - Tagansky, 8 - Tverskoy, 9 - Khamovniki, 10 - Yakimanka; Northern Administrative District (SAO): 1 – Aeroport, 2 – Begovoy, 3 – Beskudnikovsky, 4 – Voykovsky, 5 – Vostochnoye Degunino, 6 – Golovinsky, 7 – Dmitrovsky, 8 – Zapadnoye Degunino, 9 – Koptevo, 10 – Levoberezhny, 11 – Molzhaninovsky, 12 – Savelovsky, 13 – Sokol, 14 – Timiryazevsky, 15 – Khovrino, 16 – Khoroshevsky; North-Eastern Administrative District (SVAO): 1 - Alekseevsky, 2 - Altufevsky, 3 - Babushkinsky, 4 - Bibirevo, 5 - Butyrsky, 6 - Lianozovo, 7 - Losinoostrovsky, 8 - Marfino, 9 - Maryina Roshcha, 10 - Ostankinsky, 11 - Otradnoye, 12 - Rostokino, 13 - Sviblovo, 14 - Severnoye Medvedkovo, 15 - Severny, 16 - Yuzhnoye Medvedkovo, 17 - Yaroslavsky; Eastern Administrative District (VAO): 1 - Bogorodskoye, 2 - Veshnyaki, 3 - Vostochnoye Izmailovo, 4 - Vostochny, 5 - Golyanovo, 6 - Ivanovskoye, 7 - Izmailovo, 8 - Kosino-Ukhtomsky, 9 - Metrogorodok, 10 - Novogireevo, 11 - Novokosino, 12 - Perovo, 13 - Preobrazhenskoye, 14 - Severnoye Izmailovo, 15 - Sokolinaya Gora, 16 - Sokolniki; South-Eastern Administrative District (SEAD): 1 – Vykhino-Zhulebino, 2 – Kapotnya, 3 – Kuzminki, 4 – Lefortovo, 5 – Lyublino, 6 – Maryino, 7 – Nekrasovka, 8 – Nizhegorodsky, 9 – Pechatniki, 10 – Ryazansky, 11 – Tekstilshchiki, 12 – Yuzhnoportovy; Southern Administrative District (SAD): 1 – Biryulevo Vostochnoye, 2 – Biryulevo Zapadnoye, 3 – Brateevo, 4 – Danilovsky, 5 – Donskoy, 6 – Zyablikovo, 7 – Moskvorechye-Saburovo, 8 – Nagatino-Sadovniki, 9 – Nagatinsky Zaton, 10 – Nagorny, 11 – Orekhovo-Borisovo Severnoye, 12 – Orekhovo-Borisovo Yuzhnoye, 13 – Tsaritsyno, 14 – Chertanovo Severnoye, 15 – Chertanovo Tsentralnoye, 16 – Chertanovo Yuzhnoye; South-Western Administrative District (SWAD): 1 - Akademichesky, 2 - Gagarinsky, 3 - Zyuzino, 4 - Konkovo, 5 - Kotlovka, 6 - Lomonosovsky, 7 - Obruchevsky, 8 - Severnoye Butovo, 9 - Teply Stan, 10 - Cheryomushki, 11 - Yuzhnoye Butovo, 12 - Yasenevo; Western Administrative District (ZAD): 1 - Vnukovo, 2 - Dorogomilovo, 3 - Krylatskoye, 4 - Kuntsevo, 5 - Mozhaysky, 6 - Novo-Peredelkino, 7 - Ochakovo-Matveyevskoye, 8 - Prospekt Vernadskogo, 9 - Ramenki, 10 - Solntsevo, 11 - Troparevo-Nikulino, 12 - Filevsky Park, 13 - Fili-Davydkovo; North-Western Administrative Okrug (SZAO): 1 - Kurkino, 2 - Mitino, 3 - Pokrovskoye-Streshnevo, 4 - Severnoye Tushino, 5 - Strogino, 6 - Khoroshevo-Mnevniki, 7 - Shchukino, 8 - Yuzhnoye Tushino. II. New Moscow: Novomoskovsky Administrative Okrug (NAO): 1 - Vnukovskoye, 2 - Voskresenskoye, 3 - Desyonovskoye, 4 - Kokoshkino, 5 - Marushkinskoye, 6 - Moskovsky, 7 - Mosrentgen, 8 - Ryazanovskoye, 9 - Sosenskoye, 10 - Filimonkovskoye, 11 - Shcherbinka; Troitsky Administrative Okrug (TAO): 1 – Voronovskoye, 2 – Kyiv, 3 – Klenovskoye, 4 – Krasnopakhorskoye, 5 – Mikhailovo-Yartsevskoye, 6 – Novofedorovskoye, 7 – Pervomayskoye, 8 – Rogovskoye, 9 – Troitsk, 10 – Shchapovskoye. III. Moscow region: 1 – Balashikha, 2 – Bronnitsy, 3 – Vidnoye (Leninsky), 4 – Vlasikha, 5 – Volokolamsk, 6 – Voskresensk, 7 – Voskhod, 8 – Dzerzhinsky, 9 – Dmitrov, 10 – Dolgoprudny, 11 – Domodedovo, 12 – Dubna, 13 – Yegoryevsk, 14 – Zhukovsky, 15 – Zaraysk, 16 – Zvezdny Gorodok, 17 – Istra, 18 – Kashira, 19 – Klin, 20 – Kolomna, 21 – Korolev, 22 – Kotelniki, 23 – Krasnogorsk, 24 – Krasnoznamensk, 25 – Lobnya, 26 – Losino-Petrovsky, 27 – Lotoshino, 28 – Lukhovitsy, 29 – Lytkarino, 30 – Lyubertsy, 31 – Mozhaisk, 32 – Molodezhny, 33 – Mytishchi, 34 – Naro-Fominsk, 35 – Noginsk (Bogorodsky), 36 – Odintsovo, 37 – Orekhovo-Zuyevo, 38 – Pavlovsky Posad, 39 – Podolsk, 40 – Protvino, 41 – Pushkino, 42 – Pushchino, 43 – Ramenskoye, 44 – Reutov, 45 – Ruza, 46 – Sergiev Posad, 47 – Serebryanye Prudy, 48 – Serpukhov, 49 – Solnechnogorsk, 50 – Stupino, 51 – Taldom, 52 – Fryazino, 53 – Khimki, 54 – Chernogolovka, 55 – Chekhov, 56 – Shatura, 57 – Shakhovskaya, 58 – Shchyolkovo, 59 – Elektrogorsk, 60 – Elektrostal.

Download (402KB)
4. Fig. 3. Ethnic contact zones of Moscow and the Moscow region. See the digital designations of districts/settlements by administrative districts of Moscow and urban districts of the Moscow region in the caption to Fig. 2.

Download (475KB)
5. Fig. 4. Types of settlement of national-ethnic groups in Moscow and the nearest Moscow region: a) diffuse – Tajikistan; b) concentric – Armenia; c) local – EU, Great Britain and USA. For the digital designations of districts by administrative districts of Moscow, see the caption to Fig. 2.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».