Geography of research networks in the Big South of Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The geography of research and innovation activity is a traditional topic of research in human geography. Classical studies of the clustering and diffusion of innovation in the 1960s and 70s received a new impetus in the 21st century with the understanding of the openness of innovation and the importance of interregional collaborative networks. Digitalization has played an important role, providing access to new sources of large geocoded data on the movement of key elements of the knowledge economy, including publications as a formalized outcome of scientific activity. The purpose of the article is to identify the center-periphery research ties of one of the largest macroregions of Russia – the Big South of Russia. The aim was to assess the territorial patterns of interregional research networks with the identification of gravity poles and interconnections at the local and national levels. The study uses the method of spatial scientometrics. Geocoded data on publications from the Scopus bibliographic database were used. In the course of the study the hypotheses of “Moscow-centricity” and “St. Petersburg-centricity” of the knowledge domain of the macroregion are tested, the influence of the factor of geographical proximity and the role of the diversity of interregional ties are evaluated, and the “heights-lowlands” of the landscape are revealed. The results of the research have shown a high degree of connectivity between the regions of the Big South of Russia in the research area. The hypothesis about the presence of several centers of gravity of scientific activity in the macroregion was confirmed. First of all, the peaks of the “scientific ridge” of the Big South form Rostov oblast with the largest urban agglomeration in the south of the country, the Rostov urban agglomeration, as well as the Krasnodar krai and Volgograd oblast. The hypothesis of the existence of several centers of scientific activity in the macroregion was confirmed. The influence of the factor of territorial proximity in the formation of research ties is not high and is manifested mainly in the southern Russian regions with relatively low indicators of research output (primarily, it is typical for national republics). Interregional research cooperation between advanced regions is not limited to immediate geographical proximity but is due to a combination of non-territorial factors. The “Moscow-centricity” of the scientific agenda of the regions of the Big South of Russia is true for most of the southern regions of the Russian Federation, which is particularly pronounced in regions with low internal scientific potential and in new regions undergoing a period of transformation of their scientific systems.

Full Text

Restricted Access

About the authors

А. S. Mikhaylov

Institute of Geography RAS; Southern Federal University; Immanuel Kant Baltic Federal University

Author for correspondence.
Email: mikhailov.andrey@yahoo.com
Russian Federation, Moscow; Rostov-on-Don; Kaliningrad

A. A. Mikhaylova

Immanuel Kant Baltic Federal University

Email: mikhailov.andrey@yahoo.com
Russian Federation, Kaliningrad

D. V. Hvaley

Immanuel Kant Baltic Federal University

Email: mikhailov.andrey@yahoo.com
Russian Federation, Kaliningrad

References

  1. Alisov N.V. Geography of world science. Vestn. Mosk. Univ., Ser. 5: Geogr., 1993, no. 6, pp. 7–16. (In Russ.).
  2. Adler P., Florida R., King K., Mellander C. The city and high-tech startups: The spatial organization of Schumpeterian entrepreneurship. Cities, 2019, no. 87, pp. 121–130. https://doi.org/10.1016/j.cities.2018.12.013
  3. Baburin V.L., Zemtsov S.P. Geography of innovation processes in Russia. Vestn. Mosk. Univ., Ser. 5: Geogr., 2013, no. 5, pp. 25–32. (In Russ.).
  4. Baburin V.L., Zemtsov S.P. Factors of patent activity in Russian regions. Mir Econ. Upravl., 2016, vol. 16, no. 1, pp. 86–100. (In Russ.).
  5. Bathelt H., Malmberg A., Maskell P. Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Prog. Hum. Geogr., 2004, vol. 28, no. 1, pp. 31–56. https://doi.org/10.1191/0309132504ph469oa
  6. Belyaev D.O., Moisburg P. Geography of knowledge as one of the leading trends of modern geographical science. Izv. Akad. Nauk, Ser. Geogr., 2011, no. 2, pp. 7–16. (In Russ.).
  7. Bottazzi L., Peri G. Innovation and spillovers in regions: Evidence from European patent data. Eur. Econ. Rev., 2003, vol. 47, no. 4, pp. 687–710. https://doi.org/10.1016/S0014-2921(02)00307-0
  8. Camagni R. Territorial capital, competitiveness and regional development. In Handbook of regions and competitiveness. Huggins R., Thompson P., Eds. Cheltenham: Edward Elgar Publ., 2017, pp. 232–244. https://doi.org/10.4337/9781783475018.00016
  9. Cooke P., Asheim B., Boschma R., Martin R., Schwartz D., Tödtling F. Handbook of regional innovation and growth. Cheltenham: Edward Elgar Publ., 2011. 648 p. https://doi.org/10.4337/9780857931504
  10. De Noni I., Orsi L. Belussi F. The role of collaborative networks in supporting the innovation performances of lagging-behind European regions. Res. Policy, 2018, vol. 47, no. 1, pp. 1–13. https://doi.org/10.1016/j.respol.2017.09.006
  11. Druzhinin A.G. South of Russia: notional-terminological conception. Nauch. Mysl’ Kavkaza, 1999, no. 3, pp. 56–64. (In Russ.).
  12. Druzhinin A.G. South Russia in the changing geo-strategic context: major structural components and trends (socioeconomic geographer scientist view). Nauch. Mysl’ Kavkaza, 2014, vol. 79, no. 3, pp. 58–66. (In Russ.).
  13. Druzhinin A.G. Actual problems of systematization and unification of geographical terminology in the research of south Russian regionogenesis. Nauch. Mysl’ Kavkaza, 2023, vol. 113, no. 1, pp. 5–15. (In Russ.). https://doi.org/10.18522/2072-0181-2023-113-5-15
  14. Druzhinin A.G., Rednova I.F. Positioning of the regions of the South of Russia in the interaction between Russia and Turkey: foreign trade aspect. Yuzh.-Ross. Forum: Ekon., Sotsiol., Politol., Sots.-Ekon. Geogr., 2015, vol. 11, no. 2, pp. 39–47. (In Russ.).
  15. Feldman M.P., Avnimelech G. Knowledge spillovers and the geography of innovation – revisited: A 20 years’ perspective on the field on geography of innovation. In Handbook of research on innovation and entrepreneurship. Audretsch D.B., Falck O., Heblich S., Lederer A., Eds. Cheltenham: Edward Elgar Publ., 2011, pp. 150–160. https://doi.org/10.4337/9781849807760.00020
  16. Frenz M., Lambert R. Open and closed innovations: A comparative analysis of national practices. Forsait, 2008, vol. 2, no. 3, pp. 16–31. (In Russ.).
  17. Garin E.V. The main factors influencing the indicators of the development level of science, education, innovation economy. Vestn. RGNF, 2018, vol. 99, no. 3, pp. 100–112. (In Russ.). https://doi.org/10.22204/2410-4639-2018-099-03-100-112
  18. Gonçalves E., de Matos C.M., de Araújo I.F. Path-dependent dynamics and technological spillovers in the Brazilian regions. Appl. Spat. Anal. Polic., 2019, vol. 12, no. 3, pp. 605–629. https://doi.org/10.1007/s12061-018-9259-5
  19. Gorbanyov V.A., Kochurov B.I. The problem of territorial zoning of the Russian federation: domestic and international aspects. Vestn. MGIMO Univ., 2018, vol. 61, no. 4, pp. 23–54. (In Russ.). https://doi.org/10.24833/2071-8160-2018-4-61-23-54
  20. Kaneva M.A., Untura G.A. Evolution of theories and empirical models of a relationship between economic growth, science and innovations (part 2). Mir Econ. Upravl., 2018, vol. 18, no. 1, pp. 5–17. (In Russ.). https://doi.org/10.25205/2542-0429-2018-18-1-5-17
  21. Korepanov E.N. Paradoxes in science and innovations. Vestn. Inst. Ekon. RAN, 2019, no. 1, pp. 47–56. (In Russ.). https://doi.org/10.24411/2073-6487-2019-10003
  22. Lorentzen A. Knowledge networks in local and global space. Entrep. Reg. Dev., 2008, vol. 20, no. 6, pp. 533–545. https://doi.org/10.1080/08985620802462124
  23. Mikhaylov A.S., Mikhaylova A.A., Hvaley D.V. Sustainable development of the city territorial capital: adaptive policy through the geography of knowledge. Vestn. Balt. Fed. Univ. Kanta, Ser.: Gum. Obshch. Nauki, 2020, no. 2, pp. 38–52. (In Russ.).
  24. Morrison A., Rabellotti R., Zirulia L. When do global pipelines enhance the diffusion of knowledge in clusters? Econ. Geogr., 2013, vol. 89, no. 1, pp. 77–96. https://doi.org/10.1111/j.1944-8287.2012.01167.x
  25. Mosconi F., D’Ingiullo D. Institutional quality and innovation: evidence from Emilia-Romagna. Econ. Innov. New Tech., 2023, vol. 32, no. 2, pp. 165–197. https://doi.org/10.1080/10438599.2021.1893140
  26. Panikarova S.V., Vlasov M.V., Kusnetsov P.D. Assessment of scientific productivity of the universities: institutional approach. Univ. Upravl.: Practika Analiz, 2016, no. 5, pp. 80–89. (In Russ.). https://doi.org/10.15826/umj.2016.105.046
  27. Pilyasov A.N., Klimenko N.A. The Baltic macroregion: geographical macrostructures, communication features, innovative potential. Balt. Reg., 2011, no. 3, pp. 61–75. https://doi.org/10.5922/2079-8555-2011-3-8
  28. Platonov V.V., Statovskaya E.Yu., Statovskiy D.A. Localization of innovation processes: beyond the concept of geographical proximity. Innovations, 2015, vol. 201, no. 7, pp. 76–79.
  29. Tödtling F., Grillitsch M., Höglinger C. Knowledge sourcing and innovation in Austrian ICT companies – how does geography matter? Ind. Innov., 2012, vol. 19, no. 4, pp. 327–348. https://doi.org/10.1080/13662716.2012.694678
  30. Tödtling F., Trippl M. Innovation and knowledge links in metropolitan regions: The case of Vienna. In Metropolitan Regions. Advances in Spatial Science. Klaesson J., Johansson B., Karlsson C., Eds. Berlin, Heidelberg: Springer, 2013, pp. 451–472. https://doi.org/10.1007/978-3-642-32141-2_19
  31. Trippl M., Tödtling F., Lengauer L. Knowledge sourcing beyond buzz and pipelines: evidence from the Vienna software sector. Econ. Geogr., 2009, vol. 85, no. 4, pp. 443–462. https://doi.org/10.1111/j.1944-8287.2009.01047.x
  32. van den Broek J., Benneworth P., Rutten R. Institutionalization of cross-border regional innovation systems: The role of university institutional entrepreneurs. Reg. Stud. Reg. Sci., 2019, vol. 6, no. 1, pp. 55–69. https://doi.org/10.1080/21681376.2018.1562367
  33. Volchik W, Maslyukova E.V., Panteeva S.A. Investigating the approaches to national innovation systems modeling. Econ. Sots. Perem.: Fakty, Tendents., Prognoz, 2021, vol. 14, no. 5, pp. 135–150. (In Russ.). https://doi.org/10.15838/esc.2021.5.77.8
  34. Zamyatina N.Yu. Figurative relief of Russia (based on the materials of the official websites of the regions of the Russian Federation). Vestn. Evrazii, 2006, no. 2, pp. 5–24. (In Russ.).
  35. Zamyatina N.Y., Pilyasov A.N. Concept of proximity: Foreign experience and prospects of application in Russia. Reg. Res. Russ., 2017, vol. 7, pp. 197–207. https://doi.org/10.1134/S2079970517030108
  36. Zemtsov S., Kotsemir M. An assessment of regional innovation system efficiency in Russia: the application of the DEA approach. Scientometrics, 2019, vol. 120, no. 2, pp. 375–404.
  37. Zemtsov S.P., Barinova V.A., Muradov A.K. What factors affect regional innovation activity? Innovatsii, 2016, vol. 211, no. 5, pp. 64–73. (In Russ.).
  38. Zemtsov S.P., Smelov Y.A. Factors of regional development in Russia: Geography, human capital and regional policies. Zh. Novoi Ekon. Assots., 2018, vol. 40, no. 4, pp. 84–108. (In Russ.). https://doi.org/10.31737/2221-2264-2018-40-4-4
  39. Zemtsov S.P., Baburin V.L., Barinova V.A. How to measure the immeasurable? Assessment of the innovation potential of Russian regions. Kreativ. Ekon., 2015, vol. 9, no. 1, pp. 35–52. (In Russ.). https://doi.org/10.18334/ce.9.1.79

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Research networks of the Greater South of Russia, 2017–2022. Note. Scientific connection is strong – more than 6%, average – from 1 to 6%, weak – less than 1% of joint publications in the total volume of publications in the region. Compiled by the authors.

Download (627KB)
3. Fig. 2. Distribution of interregional research links in the Greater South of Russia by size (expressed as the share of joint publications between regions), units. Compiled by the authors.

Download (291KB)
4. Fig. 3. Distribution of regions of the Greater South of Russia by the diversity of research links within the macroregion, 2017–2022. Note. The punch shape shows the region’s affiliation with one of five groups: triangle – type I; square – type II; rhombus – type III; circle – type IV; cross – type V. Adjacent regions not related to the South of Russia are highlighted in green. Compiled by the authors.

Download (264KB)
5. Fig. 4. “Relief” of the scientific space of the Greater South of Russia based on the analysis of scientific publications, 2017–2022. Note. The color indicates the ratio between regions in terms of their contribution to each other’s total publication volume (absolute deviation is indicated in %): green cells – the region (horizontally) has a larger share in the structure of the region’s publications (vertically); yellow cells – the regions (horizontally and vertically) occupy a similar share in the structure of each other’s publications; orange cells – the region (horizontally) has a smaller share in the structure of the region’s publications (vertically). Compiled by the authors.

Download (650KB)
6. Fig. 5. Distribution of regions of the Greater South of Russia by diversity of scientific connections and volume of publications, 2017–2022. Note: A rank value of 1 indicates the best value of this indicator for a region relative to others. Compiled by the authors.

Download (288KB)
7. Fig. 6. “Moscow-centricity”, “Pietro-centricity” and “South-centricity” of the scientific space of the Greater South of Russia based on the results of the analysis of scientific publications, 2017–2022. Note. The punch size corresponds to the share of joint publications of authors from this region with authors from other regions of the Greater South of Russia, expressed in %. Green punches with hatching correspond to adjacent regions of the Greater South of Russia. Compiled by the authors.

Download (316KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».