Climatic Prerequisites for Changes of Zonal and Subzonal Landscape Boundaries in European Russia and Western Siberia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Global warming is manifesting itself in varying degrees of intensity in the changing landscapes of the Russian plains. Productivity, biomass and boundaries of vegetation vary according to the dynamics of heat supply and humidification. A shift in landscape zone boundaries may be a consequence of global warming in the last two decades. This work evaluates changes in the climatic characteristics of natural landscapes in the Russian plains. The studies were conducted in the European part of Russia and Western Siberia, from arctic to semi–desert landscapes. Data from 265 weather stations on the territory of Russia were used for the period 2000–2022, as well as the normalised vegetation index NDVI for the summer period (quantitative indicator of photosynthetic active biomass). The following climatic parameters were taken into account: mean annual temperature, temperature in January and July, sum of temperatures above 10°C, annual precipitation, humidification coefficient and their means and standard deviations and trends for the period 2000–2022. It was found that a positive trend of the sum of active temperatures and a negative trend of precipitation are observed in the forest tundra zone. The humidification coefficient is decreasing. Climatic conditions are changing at several sites, such as tundra, forest tundra, northern and middle taiga, and now correspond to more southern landscape zones. This creates favourable conditions for changes in vegetation and is reflected in the increase in NDVI, which may lead to a shift in the boundaries of landscape zones to higher latitudes. In southern Russia, an increase in the sum of active temperatures and drainage of the territory is observed, which is reflected in a decrease in NDVI and can lead to an expansion of steppe, dry steppe and semi-desert zones. The response of vegetation cover to climate change is confirmed by changes in the normalised vegetation index.

Full Text

Restricted Access

About the authors

V. V. Vinogradova

Institute of Geography of the Russian Academy of Sciences; HSE University

Author for correspondence.
Email: vvvinog@yandex.ru
Russian Federation, Moscow; Moscow

T. B. Titkova

Institute of Geography of the Russian Academy of Sciences

Email: titkova@igras.ru
Russian Federation, Moscow

References

  1. Anisimov O., Kokorev V., Zhiltcova Y. Arctic Ecosystems and their Services under Changing Climate: Predictive‐Modeling Assessment. Geogr. Rev., 2017, vol. 107, no. 1, pp. 108–124. https://doi.org/10.1111/j.1931–0846.2016.12199.x
  2. Arctic Report Cards 2019. Richter-Mange J., Druckenmiller M.L., Jeffriers M., Eds. 2019. Available at: https://arctic.noaa.gov/Report-Card/ Report-Card-2019 (accessed: 29.05.2024).
  3. Bazhina E.V., Storozhev E.V., Storozhev V.P., Tret’yakova I.N. Drying of fir and cedar forests of Kuznetsk Alatau under conditions of technogenic pollution. Lesoved., 2013, no. 2, pp. 15–21. (In Russ.).
  4. Bazilevich N.I., Grebenshchikov O.S., Tishkov A.A. Geograficheskie zakonomernosti struktury i funktsionirovaniya ekosistem [Geographic Patterns of Ecosystem Structure and Functioning]. Isakov Yu.A., Ed. Moscow: Nauka Publ., 1986. 297 p.
  5. Belonovskaya E.A., Tishkov A.A., Vaisfel’d M.A., Glazov P.M., Krenke A.N., Morozova O.V., Pokrovskaya I.V., Tsarevskaya N.G., Tertitskii G.M. “Greening” of the Russian Arctic and current trends in changes in its biota. Izv. Akad. Nauk, Ser. Geogr., 2016, no. 3, pp. 28–39. (In Russ.).
  6. Brazhnik K., Hanley C., Shugart H.H. Simulating changes in fires and ecology of the 21st century Eurasian boreal forests of Siberia. Forests, 2017, vol. 8, no. 2, art. 49. https://doi.org/10.3390/f8020049
  7. Chebakova N.M., Bazhina E.V., Parfenova E.I., Senashova B.A. In Search of an X Factor: A Review of Publications on the Issue of Dark-needled Forest Decline/Dieback in Northern Eurasia. Russ. Meteorol. Hydrol., 2022, vol. 47, pp. 405–417. https://doi.org/10.3103/S1068373922050090
  8. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2016 god [Report on Climate Features on the Territory of Russian Federation in 2016]. Moscow: Rosgidromet, 2018. 74 p.
  9. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2022 god [Report on Climate Features on the Territory of Russian Federation in 2022]. Moscow: Rosgidromet, 2023. 104 p.
  10. Fedorov N.I., Martynenko V.B., Zhigunova S.N., Mikhailenko O.I., Shendel’ G.V., Naumova L.G. Changes in the Distribution of Broadleaf Tree Species in the Central Part of the Southern Urals since the 1970s. Russ. J. Ecol., 2021, vol. 52, pp. 118–125. https://doi.org/10.1134/S1067413621020053
  11. Frolova N.L., Kireeva M.B., Kharlamov M.A., Samsonov T.E., Entin A.L., Lurie I.K., Mapping the current state and transformation of the water regime of rivers in the European territory of Russia. Geodeziya Cartogr., 2020, no. 7, pp. 14–26. (In Russ.).
  12. Grebenyuk G.N., Kuznetsova V.P. Modern climate dynamics and phenological variability of northern territories. Vestn. Nizhnevart. Gos. Univ., 2014, no. 3, pp. 223–225. (In Russ.).
  13. IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Pörtner H.-O., Roberts D.C., Tignor M., Poloczanska E.S., Mintenbeck K., Alegría A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., Rama B., Eds. CUP, 2022.
  14. Ivanov N.N. Determination of evaporation values. Izv. Vsesoyuzn. Geogr. Obshch., 1954, vol. 86, no. 2, pp. 189–196. (In Russ.).
  15. Jia G.J., Epstein H.E., Walker D.A. Greening of arctic Alaska, 1981–2001. Geophys. Res. Lett., 2003, vol. 30, no. 20, art. 2067. https://doi.org/10.1029/2003GL018268
  16. Kharuk V.I., Im S.T., Petrov I.A., Golyukov A.S., Ranson K.J., Yagunov M.N. Climate-induced mortality of Siberian pine and fir in the Lake Baikal Watershed, Siberia. For. Ecol. Manag., 2017, vol. 384, pp. 191–199.
  17. Kravtsova V.I., Loshkareva A.R. Dynamics of vegetation in the tundra-taiga ecotone on the Kola Peninsula depending on climate fluctuations. Russ. J. Ecol., 2013, vol. 4, pp. 303–311. https://doi.org/10.1134/S1067413613040085
  18. Kullman L., Oberg L. Post Little Ice Age tree line rise and climate warming in the Swedish Scandes: A landscape ecological perspective. J. Ecol., 2009, vol. 97, no. 3, pp. 415–429.
  19. Landshaftnaya karta SSSR. Masshtab 1:4000000 [Landscape Map of the USSR. Scale 1:4000000]. Isachenko A.G., Ed. Moscow, 1988.
  20. Medvedkov A.A. Climatogenic dynamics of Siberian taiga landscapes in the Middle Yenisei basin. Geogr. Prir. Resur., 2018, no. 4, pp, 122–129. (In Russ.).
  21. Metody otsenki posledstvii izmeneniya klimata dlya fizicheskikh i biologicheskikh sistem [Methods for Assessing Climate Change Impacts on Physical and Biological Systems]. Semenov S.M., Ed. Moscow: Rosgidromet, 2012. 512 p.
  22. Mezentsev V.S. Vodnyi balans [Water Balance]. Novosibirsk, 1973. 229 p.
  23. Myers-Smith I.H., Hik D.S. Climate warming as a driver of tundra shrubline advance. J. Ecol., 2018, vol. 106, pp. 547–560.
  24. Natsional’nyi Atlas Rossii. Landshafty. T. 2. Masshtab 1: 30000000 [National Atlas of Russia. Landscapes. Vol. 2. Scale 1:30000000]. 2007. Available at: https://national-atlas.ru/tom2/331.html (accessed: 30.05.2024).
  25. Pastick N.J., Jorgenson M.T., Goetz S.J., Jones B.M., Wylie B.K., Minsley B.J., Genet H., Knight J.F., Swanson D.K., Jorgenson J.C. Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Glob. Change Biol., 2019, vol. 25, pp. 1171–1189.
  26. Rauner Yu.L. Teplovoi balans rastitel’nogo pokrova [Heat Balance of Vegetation Cover]. Leningrad: Rosgidromet, 1972. 210 p.
  27. Ryabchikov A.M. Struktura i dinamika geosfery, ee estestvennoe razvitie i izmenenie chelovekom [The Structure and Dynamics of the Geosphere, Its Natural Development and Changes by Man]. Moscow: Mysl’ Publ., 1972. 223 p.
  28. Saigin I.A., Bartalev S.A., Stytsenko F.V. Method for detecting long-term decline of dark coniferous forests in Russia based on satellite data. In Materialy 17-i Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” [Proc. of the 17th All-Russian Open Conf. “Modern Problems of Earth Remote Sensing from Space”]. Moscow: IKI RAS, 2019. (In Russ.).
  29. Sergienko V.G. Dynamics of the boundaries of forest growth zones in Russia under climate change conditions. Tr. S.-Peterb. NII Lesn. Khoz., 2015, no. 1, pp. 5–19. (In Russ.).
  30. Sergienko V.G., Konstantinov A.V. Forecast of influence of climate change on ecosystems and natural diversity species of Russian flora and fauna biotic complexes. Tr. S.-Peterb. NII Lesn. Khoz., 2016, no. 2, pp. 29–44. (In Russ.).
  31. Shpolyanskaya N., Osadchay G., Malkova G. Modern climate change and permafrost reaction (on the example of western Siberia and the European north of Russia). Geogr. Sreda Zhivye Sistemy, 2022, no. 1, pp. 6–30. (In Russ.). https://doi.org/10.18384/2712-7621-2022-1-6-30
  32. Solov’ev A.N. Climatogenic dynamics of seasonal activity of the biota of the East of the Russian Plain in the 20th century. Izv. Akad. Nauk, Ser. Geogr., 2007, no. 4, pp. 54–65. (In Russ.).
  33. Tchebakova N.M., Parfenova E.I., Bazhina E.V., Soja A.J., Groisman P.Ya. Droughts Are Not the Likely Primary Cause for Abies sibirica and Pinus sibirica Forest Dieback in the South Siberian Mountains. Forests, 2022, vol. 13, art. 1378. https://doi.org/10.3390/f13091378
  34. Tishkov A.A., Belonovskaya E.A., Glazov P.M., Krenke A.N., Titova S.V., Tsarevskaya N.G., Shmatova A.G. Anthropogenic transformation of Arctic ecosystems in Russia: Аpproaches, methods, assessments. Arktika Ekol. Ekon., 2019, vol. 36, no. 4, pp. 38–51. (In Russ.).
  35. Titkova T.B., Vinogradova V.V. Response of vegetation to changing climatic conditions in boreal and subarctic landscapes at the beginning of the 21st century. Sovrem. Probl. Distants. Zondir. Zemli Kosmosa, 2015, vol. 12, no. 3, pp. 75–86. (In Russ.).
  36. Titkova T.B., Vinogradova V.V. Climate changes in transitional natural areas of Russian northern regions and their display in landscape spectral characteristics. Sovrem. Probl. Distants. Zondir. Zemli Kosmosa, 2019, vol. 16, no. 5, pp. 310–323. (In Russ.). https://doi.org/10.21046/2070-7401-2019-16-5-310-323
  37. Titkova T.B., Zolotokrylin A.N., Vinogradova V.V. Spectral portrait of lowland landscapes of Russia. Sovrem. Probl. Distants. Zondir. Zemli Kosmosa, 2020, vol. 17, no. 3, pp. 117–126. (In Russ.). https://doi.org/10.21046/2070-7401-2020-17-3-117-126
  38. Tretii otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii [The Third Assessment Report Hydromet about Climate Change and Its Consequences on the Territory of the Russian Federation]. Moscow: Rosgidromet, 2022. 676 p.
  39. Vasiliev A.A., Gravis A.G., Gubarkov A.A., Drozdov D.S., et al. Permafrost degradation: results of the long term geocryological monitoring in the western sector of Russian Arctic. Kriosf. Zemli, 2020, vol. 24, no. 2, pp. 15–30. (In Russ.). https://doi.org/10.21782/KZ1560-7496-2020-(15-30)
  40. Vinogradova V.V., Titkova T.B., Cherenkova Е.А. Dynamics of moisture and heat fluxes in transitional landscape zones from satellite and meteorological data in the beginning of the XXI century. Sovrem. Probl. Distants. Zondir. Zemli Kosmosa, 2015, vol. 12, no. 2, pp. 162–172. (In Russ.).
  41. Vinogradova V., Titkova T., Zolotokrylin A. How climate change is affecting the transitional natural zones of the Northern and Arctic regions of Russia. Polar Sci., 2021, vol. 29, p. 100652. https://doi.org/10.1016/j.polar.2021.100652
  42. Voronin V.I., Sofronov A.P., Morozova T.I., Oskolkov V.A., Sukhovol’skii V.G., Kovalev A.V. Landscape occurrence of bacterial diseases in dark coniferous forests of the Khamar-Daban ridge (Southern Baikal region). Geogr. Prir. Resur., 2019, no. 4, pp. 56–65. (In Russ.). https://doi.org/10.21782/GIPR0206-1619-2019-4(56-65)
  43. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii [The Second Assessment Report Hydromet about Climate Change and Its Consequences on the Territory of the Russian Federation]. Moscow: Rosgidromet, 2014. 1009 p.
  44. Vysotskaya A.A., Medvedkov A.A. Climate-driven “greening” of the kurum landscape in the valley of the lower reaches or the Podkamennaya Tunguska river. InterKarto. InterGIS, 2022, vol. 28, no. 1, pp. 305–313. (In Russ.).
  45. WMO. State of the Global Climate 2020, No. 1264. WMO, 2021. 56 p.
  46. Zamolodchikov D.G. Evaluation of changes climatogenic diversity of tree species according to the forest fund. Uspekh. Sovrem. Biol., 2011, vol. 131, no. 4, pp. 382–392. (In Russ.).
  47. Zelikson E.M., Borisova O.K., Velichko A.A. Vegetation cover. In Klimaty i landshafty Severnoi Evrazii v usloviyakh global’nogo potepleniya: retrospektivnyi analiz i stsenarii [Climates and Landscapes of Northern Eurasia under Conditions of Global Warming: Retrospective Analysis and Scenarios]. Moscow: GEOS Publ., 2010, pp. 110–119. (In Russ.).
  48. Zhil’tsova E.L., Anisimov O.A. Vegetation dynamics in Northern Eurasia: analysis of modern observations and forecast for the 21st century. Arktika XXI Vek, Ser. Estest. Nauki, 2015, vol. 3, no. 2, pp. 48–59. (In Russ.).
  49. Zolotokrylin A.N., Titkova T.B., Cherenkova Е.А., Vinogradova V.V. Trends of moisture indexes and biophysical parameters of European Russia drylands for the period of 2000–2014. Sovrem. Probl. Distants. Zondir. Zemli Kosmosa, 2015, vol. 12, no. 2, pp. 155–161. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Quasi-homogeneous climatic regions (boundaries are shown by black coloured lines): I - Atlantic Arctic; IV, V, VI, VII, VIII - north-west, north-east, south-west, south-east and steppe part of the East European Plain; IX - steppes and foothills of the North Caucasus; X, XI - northern and southern parts of the forest zone of Western Siberia, XII - steppe zone of Western Siberia (Report ..., 2023). Landscape zones are shown in colour (National ..., 2007, pp. 398-399): 1 - arctic desert, 2 - tundra, 3 - forest tundra, 4 - northern taiga, 5 - middle taiga, 6 - southern taiga, 7 - sub-taiga zone, 8 - broad-leaved forest, 9 - forest-steppe, 10 - steppe, 11 - dry steppe, 12 - semi-desert, 13 - highland landscapes, 14 - lowland landscapes

Download (212KB)
3. Fig. 2. Trend of NDVI/10 years for the summer period of 2000-2022. The trend is significant at values greater than (less than) 0.02/10 years. Boundaries of landscape zones/subzones: 1 - arctic, 2 - tundra, 3 - forest-tundra, 4 - northern taiga, 5 - middle taiga, 6 - southern taiga, 7 - sub-taiga, 8 - broad-leaved forests, 9 - forest-steppe, 10 - typical and dry-steppe steppes

Download (180KB)
4. Fig. 3. Climatic preconditions of possible changes in landscape zones/subzones of the Russian plains according to meteorological stations. The colour of the weather station shows its correspondence to the landscape zone before 2000: 1 - Arctic deserts, 2 - tundra, 3 - forest tundra, 4 - northern taiga, 5 - middle taiga, 6 - southern taiga, 7 - sub-taiga zone, 8 - broad-leaved forest zone, 9 - forest-steppe, 10 - steppe, 11 - dry steppe, 12 - semi-desert, 13 - high-mountain landscapes, 14 - climatic indicators in the current climate (2000-2020) do not correspond to the landscape zone. See Fig. 1 for landscape zone designations

Download (261KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».