Analysis of the influence of temperature loads on the stress-strain state of a pre-stressed cylindrical shell

Cover Page

Cite item

Full Text

Abstract

The progressiveness of the idea of prestressing consists, on the one hand, in the possibility to regulate the stress state in accordance with the peculiarity of the structure operation, and on the other hand, in the expansion of the economically advantageous range of application of high- and high-strength steels. Such strengthening is also relevant for cylindrical shells, the throughput or storage volumes of which are directly proportional to the operating pressure. The most effective type of prestressing in this case is considered to be winding on the shell body at an angle to the longitudinal axis or in the annular direction without tilting the high-strength profile. In this regard, in this work, a theoretical study of the influence of temperature loads on the stress state of the combined shell was carried out. As a result of the study, an analytical evaluation method was developed that takes into account the mechanical, geometric values of the wall and wrapping material, as well as the parameters of the prestress, taking into account temperature effects. The developed method also found that the established ring stresses in the shell wall increase with an increase in the temperature gradient, and the stresses in the wrapping decrease. At a temperature gradient of 70°C, the ring stresses increased by 1.8 times, and the stresses in the wrapping decreased by 1.3 times. At the same time, the change in operating temperature has a noticeable effect on the distribution of stresses in the wall of the shell and wrapping. Thus, calculations of a main pipeline pre-stressed with steel wire showed that at a temperature gradient of ΔΤ=30°C, the achieved level of prestressing can decrease by 10-12% compared to the initial one, and at ΔΤ=50°C, the pre-stressed wrapping does not affect the stress state of the shell wall. The obtained results of the study indicate that, taking into account the temperature loads on the structure, it is possible to adopt the necessary design parameters for further design of steel shells even more accurately.

About the authors

N. Zh Zhangabay

M. Auezov South Kazakhstan University

ORCID iD: 0000-0002-8153-1449

A. B Moldagaliyev

M. Auezov South Kazakhstan University

ORCID iD: 0000-0002-4286-8401

S. N Buganova

Management International Education Corporation (KazGASA)

ORCID iD: 0000-0003-2005-3305

A. K Bektursunova

M. Auezov South Kazakhstan University

ORCID iD: 0000-0001-5514-5870

T. Tursunkululy

M. Auezov South Kazakhstan University

ORCID iD: 0000-0001-6215-7677

U. B Ibraimova

M. Auezov South Kazakhstan University

ORCID iD: 0009-0004-9786-1348

References

  1. Leis B.N., Zhu X.K., Forte T.P., Clark E.B. Modeling Running Fracture in Pipelines – Past, Present, and Plausible Future Directions. 2015. P. 1 – 7. https://www.researchgate.net/publication/237235879_Modeling_running_fracture_in_pipelines_-_Past_present_and_plausible_future_directions(accessed on 22 May 2024)
  2. Sugie E., Matsuoka M., Akiyama T., Mimura H., Kawaguchi Y. A Study of Shear Crack Propagation in Gas-Pressurized Pipelines. Journal Pressure Vessel Technol. 1982. 104 (4). P. 338 – 343. DOI: https://doi.org/10.1115/1.3264226
  3. Sugie E., Kaji H., Taira T., Ohashi M., Sumitomo Y. Shear Fracture Arrestability of Controlled Rolled Steel X70 Line Pipe by Full-Scale Burst Test. Journal Energy Resour. Technol. 1984. 106 (1). P. 55 – 62. DOI: https://doi.org/10.1115/1.3231024
  4. Ibraimova U., Zhangabay N., Tursunkululy T., Rakhimov M., Dossybekov S., Kolesnikov A., Karshyga G., Tengebayev N., Zhirenbayeva N., Liseitsev Y.Development of method for calculation of pre-strained steel cylindrical sheaths in view of the winding angle, pitch and thickness. Case Studies in Construction Materials. 2023. 19. P. e02233. DOI: https://doi.org/10.1016/j.cscm.2023.e02233
  5. Zhangabay N., Ibraimova U., Suleimenov U., Moldagaliyev A., Buganova S., Jumabayev A., Kolesnikov A., Tursunkululy T., Zhiyenkulkyzy D., Khalelova A., Liseitsev Y.Factors affecting extended avalanche destructions on long-distance gas pipe lines: Review. Case Studies in Construction Materials. 2023. 19. P. e02376. DOI: https://doi.org/10.1016/j.cscm.2023.e02376
  6. Zhangabay N., Ibraimova U., Ainabekov A., Buganova S., Moldagaliev A. Finite-Element Modeling of the Temperature Effect on Extended Avalanche Damage of Gas Main Pipelines. Materials. 2024. 17 (9). P. 1963. DOI: https://doi.org/10.3390/ma17091963
  7. Zhangabay N., Tursunkululy T., Bonopera M., Azatkulov O. Laboratory Investigation of the Dynamic Response of a Prestressed Composite Steel Cylindrical Tank Subjected to Horizontal Loading. Journal of Composites Science. 2023. 7 (9). P. 373. DOI: https://doi.org/10.3390/jcs7090373
  8. Zhangabay N., Bonopera M., Utelbayeva A., Tursunkululy T., Rakhimov M. Experimental and Theoretical Reproducibility Research on the Earthquake Resistance of Cylindrical Steel Tanks. Vibration. 2023. 6 (4). P. 960 – 974. DOI: https://doi.org/10.3390/vibration6040057
  9. Di Biagio M., Demofonti G., Mannucci G., Iob F., Spinelli C.M., Schmidt T. Development of a reliable model for evaluating the ductile fracture propagation resistance for high grade steel pipelines. Proceedings of the 2012 9th International Pipeline Conference. 2012. P. 24 – 28. Calgary. Alberta. Canada. DOI: https://10.1115/IPC2012-90614
  10. Zhu X.K. Review of fracture control technology for gas transmission pipelines. Proceedings of the 10th International Pipeline Conference. 2014. IPC2014-33121 P. V003T07A004. DOI: https://10.1115/IPC2014-33121
  11. Fengping Y., Chunyong H., Jinheng L., He, L., Yang L.I. Crack Propagation and Arrest Simulation of X90 Gas Pipe. International Journal of Pressure Vessels and Piping. 2017. 149. P. 120 – 131. DOI: https://10.1016/j.ijpvp.2016.12.005
  12. Elyasi N., Shahzamanian M., Lin. M., Westover L., Li Y., Kainat M., Yoosef-Ghodsi N., Adeeb S. Prediction of Tensile Strain Capacity for X52 Steel Pipeline Materials Using the Extended Finite Element Method. Applied Mechanics. 2021. 2. P. 209 – 225. DOI: https://doi.org/10.3390/applmech2020013
  13. Arumugam T.,Vijaya Kumar S.D., Karuppanan S., Ovinis M. The Influence of Axial Compressive Stress and Internal Pressure on a Pipeline Network: A Review. Applied Sciences. 2023. 13. P. 3799. DOI: https://doi.org/10.3390/app13063799
  14. Alavinasab A., Padewski E., Holley M., Jha R., Ahmadi G. Damage identification based on vibration response of prestressed concrete pipes. In Pipelines 2010: Climbing New Peaks to Infrastructure Reliability: Renew, Rehab, and Reinvest; ASCE Library: Reston. VA USA 2010. P. 909 – 919. DOI: https://doi.org/10.1061/41138(386)87
  15. Bakhtiari-Nejad F., Bideleh S.M. Nonlinear free vibration analysis of prestressed circular cylindrical shells on the Winkler/Pasternak foundation. Thin Walled Structures. 2012. 53. P. 26 – 39. DOI: https://doi.org/10.1016/j.tws.2011.12.015
  16. Chen J., Wang H., Salemi M., Balaguru P.N. Finite Element Analysis of Composite Repair for Damaged Steel Pipeline. Coatings. 2021. 11. P. 301. DOI: https://doi.org/10.3390/coatings11030301
  17. Marvin C.W. Determining the Strength of Corroded Pipe. Materials Protection and Performance. 1972. № 11. P. 34 – 40. https://yandex.kz/search/?text=Marvin+C.+W.+Determining+the+Strength+of+Corroded+Pipe.+Materials+Protection+and+Performance.+1972.+№+11.+P.+34+–+40.&lr=162&clid=9582(accessed on 24 May 2025)
  18. Yang Y., Zhang H., Wu K., Chen P., Sui Y., Yang D., Liu X. Strain capacity analysis of the mismatched welding joint with misalignments of D 1,422 mm X80 steel pipelines: an experimental and numerical investigation. Journal of Pipeline Science and Engineering. 2021. 1 (2). P. 212 – 224. DOI: https://doi.org/10.1016/j.jpse.2021.05.002
  19. Yuan J., Tian L., Zhu W., Tan Sh., Xin T., Li D., Feng W., Zhang H., Li X., Huang J., Fu A., Feng Y. Internal localized corrosion of X65-grade crude oil pipeline caused by the synergy of deposits and microorganisms. Engineering Failure Analysis. 2023. 149. P. 107276. DOI: https://doi.org/10.1016/j.engfailanal.2023.107276
  20. Rosado D.B., De Waele W., Vanderschueren D., Hertelé. S. Latest developments in mechanical properties and metallurgical features of high strength line pipe steels. International Journal of Sustainable Construction and Design. 2013. 4 (1). P.122. DOI: https://doi.org/10.21825/scad.v4i1.742
  21. Wu K., Liu X., Zhang H., Sui Y., Zhang Zh., Yang D., Liu Y. Fracture response of 1422-mm diameter pipe with double-V groove weld joints and circumferential crack in fusion line. Engineering Failure Analysis. 2020. 115. P. 104641. DOI: https://doi.org/10.1016/j.engfailanal.2020.104641

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).