Numerical simulation of nonlinear bending behaviour of uhpc beams
- Authors: Abuizeih Y.Q.1, Tamov M.M1, Leonova A.N1, Mailyan D.R2, Nikora N.I2
-
Affiliations:
- Kuban State Technological University
- Don State Technical University
- Issue: Vol 8, No 4 (2025)
- Pages: 106-126
- Section: Articles
- URL: https://journal-vniispk.ru/2618-7183/article/view/379659
- DOI: https://doi.org/10.58224/2618-7183-2025-8-4-6
- ID: 379659
Cite item
Full Text
Abstract
About the authors
Y. Q.Y Abuizeih
Kuban State Technological University
ORCID iD: 0009-0000-0813-8133
M. M Tamov
Kuban State Technological University
ORCID iD: 0000-0001-8235-2314
A. N Leonova
Kuban State Technological University
ORCID iD: 0000-0002-6043-3022
D. R Mailyan
Don State Technical University
ORCID iD: 0000-0002-1175-2078
N. I Nikora
Don State Technical University
ORCID iD: 0000-0001-5988-3037
References
- Tamov M.M., Salib M.I.F., Abuizeih Y.Q.Y, Sofianikov O.D. Mix design and investigation of strength characteristics of self-compacting ultra-high-performance steel fiber reinforced concrete. News of higher educational institutions. Construction. 2022. 4. P. 25 – 39. doi: 10.32683/0536-1052-2022-760-4-25-39
- Yerofeyev V.T., Tarakanov O.V., Makridin N.I. Powder-activated high-strength and ultra-high strength fiber and textile concretes of a new generation with improved strength indicators. Building materials and products. 2024. 2. P. 13 – 21. doi: 10.54734/20722958_2024_2_13
- Jabbar A.M., Hamood M.J., Mohammed D.H. Structural Behavior of Ultra-High-Performance Concrete Beams Under Flexural and Shear Action: A Review. Engineering and Technology Journal. 2022. 40. P. 743 – 758. doi: 10.30684/etj.2021.131102.1003
- Pyo S., El-Tawil S. Capturing the strain hardening and softening responses of cementitious composites subjected to impact loading. Construction and Building Materials. 2015. 81 (15). P. 276 – 283.
- Hung C.C., El-Tawil S., Chao S.H. A Review of Developments and Challenges for UHPC in Structural Engineering: Behavior, Analysis, and Design. Journal of Structural Engineering. 2021. 147 (9). P. 1 – 19. doi: 10.1061/(ASCE)ST.1943-541X.0003073
- Helou R., Graybeal B. Flexural Behavior and Design of Ultrahigh-Performance Concrete Beams. Journal of Structural Engineering. 2022. 148. doi: 10.1061/(ASCE)ST.1943-541X.0003246
- Kodsy A., Morcous G. Flexural strength prediction models of non-prestressed Ultra-High Performance Concrete (UHPC) components. Structures. 2021. 34 (19). P. 4532 – 4547. doi: 10.1016/j.istruc.2021.10.047
- Shafieifar M., Farzad M., Azizinamini A. A comparison of existing analytical methods to predict the flexural capacity of Ultra High Performance Concrete (UHPC) beams. Construction and Building Materials. 2018. 2 (1). P. 10 – 18. doi: 10.1016/j.conbuildmat.2018.03.229
- Chen S., Zhang R., Jia L.J., Wang J. Y. Flexural behaviour of rebar-reinforced ultra-high-performance concrete beams. Magazine of Concrete Research. 2017. 70 (19). P. 997 – 1015. doi: 10.1680/jmacr.17.00283
- Yang I. H., Joh C., Kim B.S. Structural behavior of ultra high performance concrete beams subjected to bending. Engineering Structures. 2010. 32 (11). P. 3478 – 3487. doi: 10.1016/j.engstruct.2010.07.017
- Hasgul U., Turker K., Birol T., Yavas A. Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios. Structural Concrete. 2018. 19 (7). P. 1577 – 1590. doi: 10.1002/suco.201700089
- Zhang Y., Zhu Y., Qiu J., Hou C., Huang J. Impact of reinforcing ratio and fiber volume on flexural hardening behavior of steel reinforced UHPC beams. Engineering Structures. 2023. 285 (2). P. 116067. doi: 10.1016/j.engstruct.2023.116067
- Rimshin V.I., Suleymanova L.A., Amelin P.A., Anoprienko D.S. Finite element modeling of the work of bent reinforced concrete products operating in a chloride-aggressive environment. Structural Mechanics and Structures. 2025. 1 (44). P. 40 – 51. doi: 10.36622/2219-1038.2025.44.1.004
- Rimshin V.I., Amelin P.A. Numerical calculation of bent reinforced concrete elements of rectangular cross section in the Abaqus software environment. Structural mechanics of engineering constructions and buildings. 2022. 18 (6). P. 552 – 563.
- Shalobyta N.N., Polonskiy M.Ch. Features of constructing an analytical model and numerical study of the redistribution of forces in reinforced concrete beams with hybrid reinforcement. International scientific and technical conference « Theory and practice of research and design in construction using computer-aided design (CAD) systems». 2017. Brest.
- Chen L., Graybeal B.A. Modeling Structural Performance of Ultra high Performance Concrete I-Girders. Journal of Bridge Engineering. 2012. 17 (5). P. 754 – 764. doi: 10.1061/(ASCE)BE.1943-5592.0000305
- Singh M., Sheikh A.H., Ali M., Visintin P., Griffith M.C. Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams. Construction and Building Materials. 2017. 138. P. 12 – 25. doi: 10.1016/j.conbuildmat.2017.02.002
- Solhmirzaei R., Kodur V.R. A numerical model for tracing structural response of ultra-high performance concrete beams. Modelling. 2021. 2 (4). P. 448 – 466. doi: 10.3390/modelling2040024
- Zhu Y., Zhang Y., Hussein H. H., Chen G. Numerical modeling for damaged reinforced concrete slab strengthened by ultra-high performance concrete (UHPC) layer. Engineering Structures. 2019. 209. doi: 10.1016/j.engstruct.2019.110031
- Concrete damaged plasticity. ABAQUS Analysis User's Manual URL:https:// classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt05ch18s05abm36.html (date access: 11.07.24)
- Fehling E., Schmidt M., Walraven J., Leutbecher T., Fröhlich S. Ultra-High Performance Concrete UHPC: Fundamentals, Design, Examples. 2014. Berlin: Wilhelm Ernst & Sohn. doi: 10.1002/9783433604076
- Fakeh M., Jawdhari A., Fam A. Calibration of ABAQUS Concrete Damage Plasticity (CDP) Model for UHPC Material. Third International Interactive Symposium on Ultra-High Performance Concrete. 2023. doi: 10.21838/uhpc.16675
- Ji-zhi Z., Gong-feng X., Mu-xuan N., Wen-tao C. Mechanical Properties and Constitutive Model of Ultra-High Performance Concrete Material Under Uniaxial Tension and Compression Cycles. Engineering Mechanics. 2024. 41 (4). P. 81 – 93.
- Wang Z., Wang J., Liu N., Zhang F. Modeling Seismic Performance of High-Strength Steel–Ultra-High-Performance Concrete Piers with Modified Kent-Park Model Using Fiber Elements. Advances in Mechanical Engineering. 2016. 8. doi: 10.1177/1687814016633411
- Yan G. Experimental Study on Strength and Deformation of Reactive Powder Concrete Under Triaxial Compression. Yantai, People’s Republic of China, CI-Premier Pte Ltd. 2010. P. 383 – 386.
- Graybeal B. Compressive Behavior of Ultra-High-Performance Fiber-Reinforced Concrete. ACI Materials Journal. 2007. 104 (2). P. 146 – 152.
- Prem P.R., Bharatkumar B.H., Murthy A.R. Influence of Curing Regime and Steel Fibres on the Mechanical Properties of UHPC. Magazine of Concrete Research. 2015. 67 (18). P. 1 –15. doi: 10.1680/macr.14.00333
- Zhang Y., Xin H., Correia J.A.F.O. Fracture evaluation of ultra-high-performance fiber reinforced concrete (UHPFRC). Engineering Failure Analysis. 2021. 120. P. 1 – 21. doi: 10.1016/j.engfailanal.2020.105076
- Rahdar H., Ghalehnovi M. Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar. Computers and Concrete. 2016. 18 (1). P. 139 – 154. doi: 10.12989/cac.2016.18.1.139
- Haber Z.B. Varga I.D.I., Graybeal B.A. Properties and Behavior of UHPC-Class Materials. FHWA-HRT-18-036. 2018.
- Kanakubo T. Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites. Journal of Advanced Concrete Technology. 2006. 4 (1). P. 3 – 17. doi: 10.3151/jact.4.3
- Shao Y., Billington S.L. Predicting the two predominant flexural failure paths of longitudinally reinforced high-performance fiber-reinforced cementitious composite structural members. Engineering Structures. 2019. 199. doi: 10.1016/j.engstruct.2019.109581
- Hoffman, N.S. Constitutive relationships of prestressed steel fiber concrete membrane elements. University of Houston. Texas. 2010. P. 232.
- Jabbar A.M., Hamood M.J., Mohammed D.H. Impact of Dilation Angle and Viscosity on the Ultra-High Performance Concrete Behavior in Abaqus. 2010. doi: 10.1109/ICASEA53739. 2021.9733087
- Hashim D.T., Hejazi F., Voo Y.L. Simplified Constitutive and Damage Plasticity Models for UHPFRC with Different Types of Fiber. International Journal of Concrete Structures and Materials. 2020. 14 (1). P. 1 – 21.
- Dao C.B., Viet C.M., Quanh V.N., Pham H. Investigation of the shear behavior of ultra-high performance concrete girder by simulation approach. IOP Conference Series Materials Science and Engineering. 2023. 1289 (1). doi: 10.1088/1757-899X/1289/1/012029
- Tamov M.M., Abuizeih Y. Q. Y. The Effect of the Longitudinal Reinforcement Ratio on the Behavior of Ultra-High Performance Fibre-Reinforced Concrete Beams. Scientific Works of the Kuban State Technological University. 2025. 2. P. 56 – 71. doi: 10.26297/2312-9409.2025.2.6
- Yang I.H., Park J., Bui T.Q., Kim K.C., Joh C., Lee H. An Experimental Study on the Ductility and Flexural Toughness of Ultrahigh-Performance Concrete Beams Subjected to Bending. Materials. 2020. 13 (10). P. 2225. doi: 10.3390/ma13102225
- Turker K., Hasgul U., Birol T., Yavas A., Yazici H. Hybrid fiber use on flexural behavior of ultra high performance fiber reinforced concrete beams. Composite Structures. 2019. 229 (6). P. 111400. doi: 10.1016/j.compstruct.2019.111400
- Yoo D.Y., Banthia N., Yoon Y.S. Experimental and numerical study on flexural behavior of ultra-high-performance fiber-reinforced concrete beams with low reinforcement ratios. Canadian Journal of Civil Engineering. 2017. 44 (1). P. 18 – 28. doi: 10.1139/cjce-2015-0384
- Graybeal B., Davis M. Cylinder or Cube: Strength Testing of 80 to 200 MPa (11.6 to 29 ksi) Ultra-High-Performance Fiber-Reinforced Concrete. Aci Materials Journal. 2008. 105. (6). P. 603-609. doi: 10.14359/20202
- Esfahani M.H., Hejazi F., Jaafar M.S.B., Karimzadeh K. Simplified Damage Plasticity Model for Concrete. Structural Engineering International. 2017. 27 (1). P. 68 – 78. doi: 10.2749/101686616X1081
Supplementary files
