Signaling mechanisms of tetracycline antibiotics and their study using digital technologies

Cover Page

Cite item

Abstract

tetracyclines are one of the most extensively studied groups of antibiotics, characterized by a broad spectrum of biological activity. Beyond their antimicrobial effects, these compounds influence key cellular signaling pathways, including the regulation of apoptosis, inflammation, proliferation, and differentiation, opening prospects for their use in treating various diseases, such as oncological, inflammatory, and neurodegenerative disorders. This article presents current data on the structure and mechanisms of action of tetracyclines, their impact on cellular signaling systems, and their therapeutic potential in medicine. Special attention is given to the role of digital technologies in studying these compounds. The prospects of using digital methods for optimizing tetracycline structures, identifying new targets, and personalizing treatment regimens are discussed, which could significantly enhance the efficacy and safety of these drugs.

About the authors

Sardor Eshniyoz ugli Mukhammadiev

Don State Technical University

M. S Kaplya

Don State Technical University

Email: kaplya.2023@mail.ru

Liwaa Abbas Majeed Majeed

Don State Technical University

Shukurulla Khalilla ugli Madrimov

Don State Technical University

S. V Rodkin

Don State Technical University

Email: rodkin_stas@mail.ru

References

  1. Rusu A., Buta E.L. The Development of Third-Generation Tetracycline Antibiotics and New Perspectives // Pharmaceutics. 2021. Vol. 13. № 12. P. 2085.
  2. Orsucci D., Calsolaro V., Mancuso M., Siciliano G. Neuroprotective Effects of Tetracyclines: Molecular Targets, Animal Models and Human Disease // CNS & Neurological Disorders – Drug Targets. 2009. Vol. 8. № 3. P. 222 – 231.
  3. Aggarwal M., Patra A., Awasthi I., George A., Gagneja S., Gupta V., Capalash N., Sharma P. Drug repurposing against antibiotic resistant bacterial pathogens // The European Journal of Medicinal Chemistry. 2024. Vol. 279. P. 116833.
  4. LaPlante K.L., Dhand A., Wright K., Lauterio M. Re-establishing the utility of tetracycline-class antibiotics for current challenges with antibiotic resistance // Annals of Medicine. 2022. Vol. 54. № 1. P. 1686 – 1700.
  5. Terreni M., Taccani M., Pregnolato M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives // Molecules. 2021. Vol. 26. № 9. P. 2671.
  6. Gray D.A., Wenzel M. Multitarget Approaches against Multiresistant Superbugs // ACS Infectious Diseases. 2020. Vol. 6. № 6. P. 1346 – 1365.
  7. Chukwudi C.U. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines // Antimicrobial Agents and Chemotherapy. 2016. Vol. 60. № 8. P. 4433 – 4441.
  8. Singhal M. Agrawal M., Bhavna K., Sethiya N.K. Chloramphenicol and tetracycline (broad spectrum antibiotics) // Antibiotics – Therapeutic Spectrum and Limitations. 2023. P. 155 – 165.
  9. Connell S.R., Tracz D.M., Nierhaus K.H,, Taylor D.E. Ribosomal Protection Proteins and Their Mechanism ofTetracyclineResistance // Antimicrobial Agents and Chemotherapy. 2003. Vol. 47. № 12. P. 3675 – 3681.
  10. Speer B.S., Shoemaker N.B., Salyers A.A. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance // Clinical Microbiology Reviews. 1992. Vol. 5. № 4. P. 387 – 399.
  11. Sun J., Shigemi H., Tanaka Y., Yamauchi T. Tetracyclines downregulate the production of LPS-induced cytokines and chemokines in THP-1 cells via ERK, p38, and nuclear factor-?B signaling pathways // Biochemistry and Biophysics Reports. 2015. Vol. 4. P. 397 – 404.
  12. Qiu W., Hu J., Magnuson J.T., Greer J., Yang M. Evidence linking exposure of fish primary macrophages to antibiotics activates the NF-kB pathway // Environment International. 2020. Vol. 138. P. 105624.
  13. Griffin M.O., Fricovsky E., Ceballos G., Villarreal F. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature // American Physiological Society Journal. 2010. Vol. 299. № 3. P. 539 – 548.
  14. Perry E.A., Bennett C.F., Luo C., Balsa E. Tetracyclines promote survival and fitness in mitochondrial disease models // Nature Metabolism. 2021. Vol. 3. № 1. P. 33 – 42.
  15. Su?rez-Rivero J.M., L?pez-P?rez J., Muela-Zarzuela I. Neurodegeneration, Mitochondria, and Antibiotics // Metabolites. 2023. Vol. 13. № 3. P. 416.
  16. Jiang Y., Zhu J., Wu L., Xu G., Dai J., Liu X. Tetracycline Inhibits Local Inflammation Induced by Cerebral Ischemia via Modulating Autophagy // PLoS One. ed. Combs C. 2012. Vol. 7. № 11. P. 48672.
  17. Kounatidis D., Dalamaga M., Grivakou E., Karampela I., Koufopoulos P., Dalopoulos V. Third-Generation Tetracyclines: Current Knowledge and Therapeutic Potential // Biomolecules. 2024. Vol. 14. № 7. P. 783.
  18. Chaves Filho A.J.M., Mottin M., Soares M.V.R., Juc? P.M., Andrade C.H., Macedo D.S. Tetracyclines, a promise for neuropsychiatric disorders: from adjunctive therapy to the discovery of new targets for rational drug design in psychiatry // Behavioural Pharmacology. 2021. Vol. 32. № 2&3. P. 123 – 141.
  19. Li J., Qin Y., Zhao C., Zhang Z., Zhou Z. Tetracycline antibiotics: Potential anticancer drugs // European Journal of Pharmacology. 2023. Vol. 956. P. 175949.
  20. Fife R.S., Sledge G.W. Jr., Sissons S., Zerler B. Effects of tetracyclines on angiogenesis in vitro // Cancer Letters. 2000. Vol. 153. № 1-2. P. 75 – 78.
  21. Karamanolis N.N., Kounatidis D., Vallianou N.G., Dimitriou K., Tsaroucha E., Tsioulos G. Unraveling the Anti-Cancer Mechanisms of Antibiotics: Current Insights, Controversies, and Future Perspectives // Antibiotics. 2024. Vol. 14. № 1. P. 9.
  22. Gu Y., Lee H.M., Sorsa T., Salminen A., Ryan M.E., Slepian M.J., Golub L.M. Non-antibacterial tetracyclines modulate mediators of periodontitis and atherosclerotic cardiovascular disease: A mechanistic link between local and systemic inflammation // Pharmacological Research. 2011. Vol. 64. № 6. P. 573 – 579.
  23. Orylska-Ratynska M., Placek W., Owczarczyk-Saczonek A. Tetracyclines – An Important Therapeutic Tool for Dermatologists // International Journal of Environmental Research and Public Health. 2022. Vol. 19. № 12. P. 7246.
  24. Radi? M., Belan?i? A., ?oga? H., Vu?kovi? M., Gelemanovi? A., Faour A., Vlak I., Radi? J. Tetracyclines in Rheumatoid Arthritis: Dual Anti-Inflammatory and Immunomodulatory Roles, Effectiveness, and Safety Insights // Antibiotics. 2025. Vol. 14. № 1. P. 65.
  25. Yang J.-M., Chen YanFu C., Tu YuYin T., KueiRong Y. Combinatorial Computational Approaches to Identify Tetracycline Derivatives as Flavivirus Inhibitors // PLOS One. 2007. Vol. 2. № 5. P. 428.
  26. Saxena R.R., Saxena R. Applying Graph Neural Networks in Pharmacology // Authorea Preprints. 2024. P. 1 – 24.
  27. Lu Y.-X., Yuan H., Shao Y., Chand H., Wu Y., Yang YL, Song HL. Shedding light on the transfer of tetracycline in forward osmosis through experimental investigation and machine learning modeling // Chemosphere. 2023. Vol. 319. P. 137959.
  28. Gheytanzadeh M., Baghban A., Habibzadeh S., Jabbour K., Esmaeili A., Mohaddespour A. An insight into tetracycline photocatalytic degradation by MOFs using the artificial intelligence technique // Scientific Reports. 2022. Vol. 12. № 1. P. 6615.
  29. Dobson E.T.A., Cimini B., Klemm A.H, W?hlby C., Carpenter A.E., Eliceiri K.W. ImageJ and CellProfiler: Complements in Open?Source Bioimage Analysis // Current Protocols. 2021. Vol. 1. № 5. P. 89.
  30. Suderman M., Hallett M. Tools for visually exploring biological networks // Bioinformatics. 2007. Vol. 23. № 20. P. 2651 – 2659.
  31. Jacot D., Soldati-Favre D. CRISPR/Cas9-Mediated Generation of Tetracycline Repressor-Based Inducible Knockdown in Toxoplasma gondii. 2020. P. 125 – 141.
  32. Shim H. Three Innovations of Next-Generation Antibiotics: Evolvability, Specificity, and Non-Immunogenicity // Antibiotics. 2023. Vol. 12. № 2. P. 204.
  33. Kaushik A., Ammerman N.C., Martins O. In Vitro Activity of New Tetracycline Analogs Omadacycline and Eravacycline against Drug-Resistant Clinical Isolates of Mycobacterium abscessus // Antimicrobial Agents and Chemotherapy. 2019. Vol. 63. № 6. P. 10 – 1128.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).