Signaling mechanisms of tetracycline antibiotics and their study using digital technologies
- Authors: Mukhammadiev S.E.1, Kaplya M.S1, Majeed L.A.1, Madrimov S.K.1, Rodkin S.V1
-
Affiliations:
- Don State Technical University
- Issue: Vol 8, No 5 (2025)
- Pages: 12-23
- Section: ARTICLES
- URL: https://journal-vniispk.ru/2658-3313/article/view/377447
- ID: 377447
Cite item
Abstract
Keywords
About the authors
Sardor Eshniyoz ugli Mukhammadiev
Don State Technical University
M. S Kaplya
Don State Technical University
Email: kaplya.2023@mail.ru
Liwaa Abbas Majeed Majeed
Don State Technical University
Shukurulla Khalilla ugli Madrimov
Don State Technical University
S. V Rodkin
Don State Technical University
Email: rodkin_stas@mail.ru
References
- Rusu A., Buta E.L. The Development of Third-Generation Tetracycline Antibiotics and New Perspectives // Pharmaceutics. 2021. Vol. 13. № 12. P. 2085.
- Orsucci D., Calsolaro V., Mancuso M., Siciliano G. Neuroprotective Effects of Tetracyclines: Molecular Targets, Animal Models and Human Disease // CNS & Neurological Disorders – Drug Targets. 2009. Vol. 8. № 3. P. 222 – 231.
- Aggarwal M., Patra A., Awasthi I., George A., Gagneja S., Gupta V., Capalash N., Sharma P. Drug repurposing against antibiotic resistant bacterial pathogens // The European Journal of Medicinal Chemistry. 2024. Vol. 279. P. 116833.
- LaPlante K.L., Dhand A., Wright K., Lauterio M. Re-establishing the utility of tetracycline-class antibiotics for current challenges with antibiotic resistance // Annals of Medicine. 2022. Vol. 54. № 1. P. 1686 – 1700.
- Terreni M., Taccani M., Pregnolato M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives // Molecules. 2021. Vol. 26. № 9. P. 2671.
- Gray D.A., Wenzel M. Multitarget Approaches against Multiresistant Superbugs // ACS Infectious Diseases. 2020. Vol. 6. № 6. P. 1346 – 1365.
- Chukwudi C.U. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines // Antimicrobial Agents and Chemotherapy. 2016. Vol. 60. № 8. P. 4433 – 4441.
- Singhal M. Agrawal M., Bhavna K., Sethiya N.K. Chloramphenicol and tetracycline (broad spectrum antibiotics) // Antibiotics – Therapeutic Spectrum and Limitations. 2023. P. 155 – 165.
- Connell S.R., Tracz D.M., Nierhaus K.H,, Taylor D.E. Ribosomal Protection Proteins and Their Mechanism ofTetracyclineResistance // Antimicrobial Agents and Chemotherapy. 2003. Vol. 47. № 12. P. 3675 – 3681.
- Speer B.S., Shoemaker N.B., Salyers A.A. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance // Clinical Microbiology Reviews. 1992. Vol. 5. № 4. P. 387 – 399.
- Sun J., Shigemi H., Tanaka Y., Yamauchi T. Tetracyclines downregulate the production of LPS-induced cytokines and chemokines in THP-1 cells via ERK, p38, and nuclear factor-?B signaling pathways // Biochemistry and Biophysics Reports. 2015. Vol. 4. P. 397 – 404.
- Qiu W., Hu J., Magnuson J.T., Greer J., Yang M. Evidence linking exposure of fish primary macrophages to antibiotics activates the NF-kB pathway // Environment International. 2020. Vol. 138. P. 105624.
- Griffin M.O., Fricovsky E., Ceballos G., Villarreal F. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature // American Physiological Society Journal. 2010. Vol. 299. № 3. P. 539 – 548.
- Perry E.A., Bennett C.F., Luo C., Balsa E. Tetracyclines promote survival and fitness in mitochondrial disease models // Nature Metabolism. 2021. Vol. 3. № 1. P. 33 – 42.
- Su?rez-Rivero J.M., L?pez-P?rez J., Muela-Zarzuela I. Neurodegeneration, Mitochondria, and Antibiotics // Metabolites. 2023. Vol. 13. № 3. P. 416.
- Jiang Y., Zhu J., Wu L., Xu G., Dai J., Liu X. Tetracycline Inhibits Local Inflammation Induced by Cerebral Ischemia via Modulating Autophagy // PLoS One. ed. Combs C. 2012. Vol. 7. № 11. P. 48672.
- Kounatidis D., Dalamaga M., Grivakou E., Karampela I., Koufopoulos P., Dalopoulos V. Third-Generation Tetracyclines: Current Knowledge and Therapeutic Potential // Biomolecules. 2024. Vol. 14. № 7. P. 783.
- Chaves Filho A.J.M., Mottin M., Soares M.V.R., Juc? P.M., Andrade C.H., Macedo D.S. Tetracyclines, a promise for neuropsychiatric disorders: from adjunctive therapy to the discovery of new targets for rational drug design in psychiatry // Behavioural Pharmacology. 2021. Vol. 32. № 2&3. P. 123 – 141.
- Li J., Qin Y., Zhao C., Zhang Z., Zhou Z. Tetracycline antibiotics: Potential anticancer drugs // European Journal of Pharmacology. 2023. Vol. 956. P. 175949.
- Fife R.S., Sledge G.W. Jr., Sissons S., Zerler B. Effects of tetracyclines on angiogenesis in vitro // Cancer Letters. 2000. Vol. 153. № 1-2. P. 75 – 78.
- Karamanolis N.N., Kounatidis D., Vallianou N.G., Dimitriou K., Tsaroucha E., Tsioulos G. Unraveling the Anti-Cancer Mechanisms of Antibiotics: Current Insights, Controversies, and Future Perspectives // Antibiotics. 2024. Vol. 14. № 1. P. 9.
- Gu Y., Lee H.M., Sorsa T., Salminen A., Ryan M.E., Slepian M.J., Golub L.M. Non-antibacterial tetracyclines modulate mediators of periodontitis and atherosclerotic cardiovascular disease: A mechanistic link between local and systemic inflammation // Pharmacological Research. 2011. Vol. 64. № 6. P. 573 – 579.
- Orylska-Ratynska M., Placek W., Owczarczyk-Saczonek A. Tetracyclines – An Important Therapeutic Tool for Dermatologists // International Journal of Environmental Research and Public Health. 2022. Vol. 19. № 12. P. 7246.
- Radi? M., Belan?i? A., ?oga? H., Vu?kovi? M., Gelemanovi? A., Faour A., Vlak I., Radi? J. Tetracyclines in Rheumatoid Arthritis: Dual Anti-Inflammatory and Immunomodulatory Roles, Effectiveness, and Safety Insights // Antibiotics. 2025. Vol. 14. № 1. P. 65.
- Yang J.-M., Chen YanFu C., Tu YuYin T., KueiRong Y. Combinatorial Computational Approaches to Identify Tetracycline Derivatives as Flavivirus Inhibitors // PLOS One. 2007. Vol. 2. № 5. P. 428.
- Saxena R.R., Saxena R. Applying Graph Neural Networks in Pharmacology // Authorea Preprints. 2024. P. 1 – 24.
- Lu Y.-X., Yuan H., Shao Y., Chand H., Wu Y., Yang YL, Song HL. Shedding light on the transfer of tetracycline in forward osmosis through experimental investigation and machine learning modeling // Chemosphere. 2023. Vol. 319. P. 137959.
- Gheytanzadeh M., Baghban A., Habibzadeh S., Jabbour K., Esmaeili A., Mohaddespour A. An insight into tetracycline photocatalytic degradation by MOFs using the artificial intelligence technique // Scientific Reports. 2022. Vol. 12. № 1. P. 6615.
- Dobson E.T.A., Cimini B., Klemm A.H, W?hlby C., Carpenter A.E., Eliceiri K.W. ImageJ and CellProfiler: Complements in Open?Source Bioimage Analysis // Current Protocols. 2021. Vol. 1. № 5. P. 89.
- Suderman M., Hallett M. Tools for visually exploring biological networks // Bioinformatics. 2007. Vol. 23. № 20. P. 2651 – 2659.
- Jacot D., Soldati-Favre D. CRISPR/Cas9-Mediated Generation of Tetracycline Repressor-Based Inducible Knockdown in Toxoplasma gondii. 2020. P. 125 – 141.
- Shim H. Three Innovations of Next-Generation Antibiotics: Evolvability, Specificity, and Non-Immunogenicity // Antibiotics. 2023. Vol. 12. № 2. P. 204.
- Kaushik A., Ammerman N.C., Martins O. In Vitro Activity of New Tetracycline Analogs Omadacycline and Eravacycline against Drug-Resistant Clinical Isolates of Mycobacterium abscessus // Antimicrobial Agents and Chemotherapy. 2019. Vol. 63. № 6. P. 10 – 1128.
Supplementary files
