Violation of critical perception in society: problems and prospects
- Authors: Shavlokhova E.S1,2, Kiryachkova V.A1, Kornaukhov S.A1
-
Affiliations:
- Kuban State Agrarian University named after I.T. Trubilin
- Kuban Institute of Professional Education
- Issue: Vol 8, No 5 (2025)
- Pages: 197-205
- Section: ARTICLES
- URL: https://journal-vniispk.ru/2658-3313/article/view/377594
- ID: 377594
Cite item
Abstract
the article examines the phenomenon of declining critical perception in contemporary society. The purpose is to identify key factors that undermine individuals’ ability to assess information critically and to outline prospective measures for its recovery. The methodological framework combines a comparative content analysis of media discourse (2019-2024), a sociological survey (n = 1,784 across eight Russian regions) and Spearman correlation analysis. Three interrelated clusters of factors were found: cognitive overload, algorithmic personalization, and erosion of educational filters. The sample’s Critical Perception Index deteriorated from 0.67 to 0.42 (2005–2024; p < 0.01). A strong negative correlation (? = –0.71) emerged between feed personalization intensity and respondents’ ability to detect manipulative messages. Scientific novelty lies in an integrated model describing the interaction between digital environments and cognitive biases and refining the dynamics of their influence. Practical significance is provided by a multi-level strategy: institutional regulations (fact-checking, algorithmic transparency), media- and infoliteracy educational programs, and individual cognitive self-regulation techniques. Future research should validate the model in cross-cultural settings and assess the effectiveness of the proposed measures. This study is important because existing works mainly describe individual aspects of the problem (for example, fake news or cognitive biases), leaving out their complex interaction in the dynamics of the digital environment. It should be noted that the combined effect of cognitive overload, algorithmic personalization and the erosion of educational filters statistically significantly (p <0.05) reduces individuals' ability to critically analyze information.
About the authors
E. S Shavlokhova
Kuban State Agrarian University named after I.T. Trubilin; Kuban Institute of Professional Education
V. A Kiryachkova
Kuban State Agrarian University named after I.T. Trubilin
S. A Kornaukhov
Kuban State Agrarian University named after I.T. Trubilin
References
- Левин Д.В., Смирнова А.П., Козлов А.В. Когнитивные искажения и медиапотребление молодёжи: эмпирический анализ // Вестник Московского университета. Сер. 18, Социология и политология. 2021. № 2. С. 73 – 92.
- Петров И.С. Эрозия критического восприятия в цифровой среде: роль школьного медиаобразования // Медиаобразование. 2023. № 1. С. 21 – 34.
- Паризер И. «Фильтр-пузырь»: Как интернет скрывает от вас важную информацию: пер. с англ. 2-е изд. Москва: Альпина Паблишер, 2015. 318 с.
- Суворов А. Н. Фейковые новости в российском медиадискурсе: тактики манипуляции и защита аудитории // Вопросы журналистики. 2020. № 5. С. 102 – 118.
- РосИндекс-Медиа. Панельные данные медиапотребления 2005-2024 гг. URL: [https://rosindexmedia.ru/data] (https://rosindexmedia.ru/data) (дата обращения: 01.03.2025)
- Pariser E. The Filter Bubble: What the Internet Is Hiding from You. London: Penguin Press, 2011. 294 p.
- Sunstein C.R. Republic: Divided Democracy in the Age of Social Media. Princeton, NJ: Princeton University Press, 2017. 376 p.
- Lewandowsky S., Ecker U.K.H., Cook J. Beyond misinformation: understanding and coping with the “post-truth” era // Journal of Applied Research in Memory and Cognition. 2017. Vol. 6. No. 4. P. 353 – 369.
- Pennycook G., Rand D.G. Lazy, not biased: susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning // Cognition. 2019. Vol. 188. P. 39 – 50.
- Allcott H., Gentzkow M. Social media and fake news in the 2016 election // Journal of Economic Perspectives. 2017. Vol. 31. No. 2. P. 211 – 236.
- Tandoc E.C.Jr., Lim Z.W., Ling R. Defining “fake news”: a typology of scholarly definitions // Digital Journalism. 2018. Vol. 6. No. 2. P. 137 – 153.
- Tversky A., Kahneman D. Judgment under uncertainty: heuristics and biases // Science. 1974. Vol. 185. No. 4157. P. 1124 – 1131.
- Bakshy E., Messing S., Adamic L.A. Exposure to ideologically diverse news and opinion on Facebook // Science. 2015. Vol. 348. No. 6239. P. 1130 – 1132.
- Bod? B. Personalised news: merging p
Supplementary files
