Bacterial diversity and metabolism in microbial consortium of non-axenic culture Tychonema sp. BBK16

Capa

Citar

Texto integral

Resumo

We performed high-throughput sequencing of microbial community with cyanobacterium Tychonema sp. BBK16 and heterotrophic bacteria in vitro. Representatives of the phylum Pseudomonadota/Proteobacteria, the bacteria Hydrogenophaga, Sphingomonas, Paucibacter, Aminobacter, Devosia, Tahibacter, and Bosea dominate and coexist with the cyanobacterium for a long period of cultivation. It was found that this cyanobacterium is an edificator of this community providing the microbiome with organic matter. Metabolic features of heterotrophic bacteria based on reconstructed genomes are presented. The main processes of carbon and nitrogen metabolism in the biofilm are carbohydrate and amino acid metabolism, as well as processes regulating the relationships between members of this consortium. Hydrogenophaga sp. and Tychonema sp. BBK16 show carbon autotrophy due to the Calvin–Benson–Bassham (СВВ) cycle, while Sphingomonas sp. due to the glyoxylate pathway of metabolism. The biofilm also contains the anoxygenic photoheterotroph Bosea sp. using light energy to transform organic matter. Aminobacter sp. is an active degrader of complex organics, which possesses methylotrophy and supplies hydrogen for oxidation by Hydrogenophaga sp., Paucibacter sp., also supplies hydrogen for this community. Sphingomonas, Tychonema and Paucibacter release phosphate from organic compounds providing phosphorus to this consortium.

Texto integral

1. Introduction

Interactions occurring between algae and bacteria represent a particular circulation of organic matter (Azam et al., 1983). Cyanobacteria, as primary producers, form a specific habitat environment by forming organic matter and synthesizing biologically active metabolites (Woodhouse et al., 2018). Heterotrophic bacteria associated with cyanobacteria are more often species with flexible universal metabolism, most of the strains belong to Proteobacteria (Berg et al., 2009). High-throughput sequencing allows a detailed inventory of cyanobacteria-heterotrophic bacteria associations without cultivating (Shaw et al., 2020). For example, Nostoc macrocolony communities from lakes have been found to repeat partly a plankton-lake motif, but members of Shingomonadaceae, Rhodobacteriaceae, Comamonadaceae become distinctive (Aguilar et al., 2019). These bacteria are frequent companions of cyanobacteria in natural conditions (Chun et al., 2017; Park et al., 2021; Thorat et al., 2022). Metagenomic studies of the non-axenic cultures’ microbiome of subpolar cyanobacteria showed the occurrence of representatives of Proteobacteria and Bacteroidetes in the community and ruled out the possibility of external contamination confirming the co-evolution of cyanobacteria and their companions (Cornet et al., 2018). Non-axenic algal cultures are suitable model objects for studying interactions between algae and heterotrophic bacteria because they demonstrate in situ relationships. The presence of different bacteria in cyanobacterial cultures allows the study of their genomes using bioinformatics tools for nucleotide fragment separation (Tan et al., 2016).

The genome of the filamentous cyanobacterium Tychonema sp. BBK16 isolated from benthic biofilms revealed its ecology and genomic characteristics (Tikhonova et al., 2022; Evseev et al., 2023). Analysis of DNA isolated from a non-axenic culture of cyanobacterium revealed heterotrophic bacteria inhabiting the mucous cover during autotrophic biofilm growth in vitro. The aim of this work is to study the bacteria-companions of Tychonema sp. BBK16 and the metabolic characterization of this microbial consortium based on DNA barcoding and metagenomics data.

2. Material and methods

Sample collection and DNA sequencing

Obtaining a non-axenic culture of cyanobacterium and isolation of DNA was previously described (Tikhonova et al., 2022). The strain was cultured in vitro for seven years on autotrophic Z-8 medium containing nitrate, sulfate, carbonate, and phosphate as nutrients. Illumina Miseq sequencing of the V3-V4 region of 16S rRNA gene was performed according to the manufacturer`s instructions with primers 343F (CTCCTACGGRRSGCAG) and 806R (GGACTACNVVGGGTWTCTAAT) in Evrogen (Moscow). Shotgun sequencing was performed by different methods using the DNBSEQ-400 sequencer (MGI, China) by PCR-free protocol with enzymatic fragmentation (MGI, China) and using the Illumina MiSeq platform (Illumina, USA) by the paired-end reads in the case of MGI - 150 bp, in the case of Illumina - 300 bp. The quality of V3-V4 amplicon libraries and metagenomic sequencing results were assessed using the program MultiQC v. 1.12 (Ewels et al., 2016), and adapters were removed using the Trim Galore v. 0.6.5 program (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/, date last accessed: 12 December 2023). A phylogenetic tree was constructed using the BEAST v. l.8.4 (Drummond and Rambaut, 2007). Raw data deposited PRJNA1042932 (two metagenomic sequencing pools), SRR11929492 (16S rRNA gene sequencing data).

DNA metabarcoding data processing

The DADA2 v. 1.16 package for the R programming language was used for further processing, which included filtering out non-target and chimeric sequences, and clustering into ASVs (Amplicon Sequence Variants) (Callahan et al., 2016; R Core Team, 2021). Nearest homologues were selected by BLASTn searches using the NCBI nr/nt reference sequence databases. ASVs and nearest homologues were aligned using the ClustalO algorithm (Sievers et al., 2011).

Shotgun data processing

Assembly of reads into contigs was performed using the SPAdes v. 3.15.4 (Prjibelski et al., 2020). Mapping of reads to the produced contigs was performed with BWA v. 0.7.17 and the Samtools v. 1.18 package (Heng and Durbin, 2009; Danecek et al., 2021). Metagenomic binning and genome isolation was performed using MetaBAT2 v. 2.15 (Kang et al., 2019). Completeness and contamination of the final MAGs were evaluated using CheckM2 v. 1.0.2 based on a machine learning algorithm (Chklovski et al., 2022).

Open reading frames (ORFs) in contigs were detected using Prodigal v. 2.6.3 (Hyatt et al., 2010). KEGG annotation and assignment of KO numbers to proteins were performed using the BlastKOALA service (Kanehisa et al., 2016) and semi-automatically using DIAMOND v. 2.1.8 (Buchfink et al., 2021) against the NCBI nr protein sequence database. Ribosomal RNA genes were isolated using Barrnap v. 0.9 (Seemann, 2013). Taxonomic annotation of contigs and MAGs was performed using the Kaiju service (Menzel et al., 2016) and manually improved using author scripts based on metabolic annotation obtained previously.

The functional characteristics of microorganisms were established based on the presence of marker genes for metabolic processes in the genome, similar to the methodology described by Garner et al. (2023). Carbon autotrophy was established by the presence of genes in the CBB cycle - rbcL, prkB; glyoxylate assimilation pathway - mct; ammonia transport into the cell - amt, and its assimilation - glnA; transport of nitrite/nitrate - nrtABC, assimilation of nitrates/nitrites - narB, nirA, nasABED; denitrification genes - narGHI, nirK, norB, nosZ; urea transport - urtABCDE and its decomposition to ammonia - ureABC; carboxylation of urea - E6.3.4.6 urea carboxylase; ammonium production from glutamate – asnB; phosphonate transport phnCDE; phosphonate decomposition – phnAB; decomposition and modification of phosphonates - phnIJKLMPWXY; assimilation of phosphate from organic compounds – phoD; transport of inorganic phosphate - pstBS; hydrolytic enzymes for polysaccharides - argH, glgX, susACD; sulfate and thiosulphate transport system - cysAPUW; oxidation of sulfates and thiosulphates in periplasm - soxABCDXZ; degradation of aromatic compounds - vanA, dmpB, xylE; assimilation of carbon monoxide with the release of hydrogen - coxMLS, cutML; permeases for facilitated transport of oligopeptides and oligosaccharides - oppABCDF, mppA; methylamine utilisation (methylotrophy)- gmaS, mgsABC, mgdABCD; use of carbon monoxide - coxMLS, cutML; synthesis of bacteriochlorophylls - bchMO; light-gathering polypeptides, photosystem II - pufML.

3. Results and discussion

Phylogenetic diversity and bacterial genomes in a non-axenic culture Tychonema sp. BBK16

Sequencing of the V3-V4 amplicon library of 16S rRNA gene resulted in 62,028 paired-end reads. From this set, 21 ASVs were isolated, the annotation of which revealed representatives of three phyla: Cyanobacteria (66.1%), Pseudomonadota/Proteobacteria (33.7%), and Actinobacteriota (0.2%). The most represented genera are Hydrogenophaga, Sphingomonas, Paucibacter, Pseudomonas, Aminobacter, Devosia, Tahibacter, Bosea, Methylophilus, Rhodopseudomonas, Ensifer, Tabrizicola, Acidovorax, Caulobacter; minor genera are Rhodococcus and Iamia (Table 1).

 

Table 1. Abundance of ASVs in the biofilm of Tychonema sp. BBK16 sample

ID

Phylum

Class

Genus

Count

Value, %

ASV001

Cyanobacteriota

Cyanobacteria

Tychonema CCAP 1459-11B

41016

66.12

ASV003

Pseudomonadota/Proteobacteria

Betaproteobacteria

Hydrogenophaga

10959

17.66

ASV005

Pseudomonadota/Proteobacteria

Alphaproteobacteria

Sphingomonas

5116

8.24

ASV012

Pseudomonadota/Proteobacteria

Betaproteobacteria

Paucibacter

1041

1.67

ASV009

Pseudomonadota/Proteobacteria

Gammaproteobacteria

Pseudomonas

840

1.35

ASV016

Pseudomonadota/Proteobacteria

Alphaproteobacteria

Aminobacter

789

1.27

ASV017

Pseudomonadota/Proteobacteria

Alphaproteobacteria

Devosia

669

1.08

ASV004

Pseudomonadota/Proteobacteria

Gammaproteobacteria

Tahibacter

635

1.02

ASV020

Pseudomonadota/Proteobacteria

Alphaproteobacteria

Devosia

433

0.7

ASV037

Pseudomonadota/Proteobacteria

Alphaproteobacteria

Devosia

147

0.24

ASV041

Pseudomonadota/Proteobacteria

Alphaproteobacteria

Bosea

81

0.13

ASV047

Actinobacteriota

Actinobacteria

Rhodococcus

71

0.11

ASV049

Pseudomonadota/Proteobacteria

Gammaproteobacteria

Methylophilus

60

0.01

ASV050

Pseudomonadota/Proteobacteria

Alphaproteobacteria

Rhodopseudomonas

58

0.094

ASV051

Pseudomonadota/Proteobacteria

Alphaproteobacteria

Ensifer

52

0.084

ASV056

Pseudomonadota/Proteobacteria

Alphaproteobacteria

Tabrizicola

36

0.058

ASV027

Actinobacteriota

Actinobacteria

Rhodococcus

14

0.023

ASV093

Pseudomonadota/Proteobacteria

Gammaproteobacteria

Acidovorax

3

0.005

ASV092

Pseudomonadota/Proteobacteria

Alphaproteobacteria

Caulobacter

3

0.005

ASV091

Actinobacteriota

Acidimicrobiia

Iamia

3

0.005

ASV095

Proteobacteria

Gammaproteobacteria

Acidovorax

2

0.003

 

Shotgun sequencing generated 18,4421,914 paired-end reads; taxonomic annotation of which revealed representatives of three phyla: Cyanobacteria (50.2%), Proteobacteria (49.6%), and Actinobacteriota (0.2%). Metagenomic binning of the contigs obtained after assembly identified 12 bacterial genomes of different quality (Table 2). The most complete genomes according to CheckM2 completeness and contamination statistics (given in parentheses, %), were the following: Tychonema sp. BBK16 (bin.4 — 99.15 / 2.42), Tahibacter sp. (bin.3 — 99.3 / 0.09), Aminobacter sp. (bin.8 — 97.44 / 1.83), Paucibacter sp. (bin.9 — 100 / 0.26), Sphingomonas sp. (bin.11 — 99.76 / 8.07). Also noteworthy is the high percentage of assembly of the Devosia, Bosea, and Hydrogenophaga genomes.

 

Table 2. Metagenome-assembled genomes isolated from the Tychonema sp. BBK16 biofilm sample. Bins with >50% completeness and <5% contamination are in bold.

bin ID

Compl. *

Cont.*

Contig

N50

Genome

Size

GC

Content

Total CDS

Genus

bin.1

20.8

0.35

3434

1190380

0.63

1405

Rhodococcus

bin.2

7.19

0.01

149685

412532

0.6

443

Aminobacter

bin.3

99.3

0.09

214065

6110546

0.66

4716

Tahibacter

bin.4

99.15

2.42

108947

5876576

0.44

5150

Tychonema

bin.5

65.82

0.01

39311

2077122

0.69

1999

Hydrogenophaga

bin.6

84.19

2.56

14881

4250091

0.64

4320

Devosia

bin.8

97.44

1.83

134644

5591995

0.63

5427

Aminobacter

bin.9

100

0.26

214794

4356207

0.67

3973

Paucibacter

bin.10

84.96

3.7

10883

5032618

0.66

5129

Bosea

bin.11

99.76

8.07

90952

3846091

0.69

3710

Sphingomonas

bin.12

15.11

0.04

3530

797961

0.67

888

Stenotrophomonas

Note: * Compl. – Completeness, Cont. - Contamination

 

To assess the convergence of the targeting and metagenomic sequencing results, a phylogenetic tree was constructed based on the DNA alignment of the fragment 16S rRNA gene (Fig. 1). According to the BLASTn search, the tree also contains the nearest homologues. As shown in the figure, in most cases, it is possible to find a pair of sequences from ASVs and metagenomes belonging to the same genus/species that indicate sufficient sequencing depth for both methods. Even when no 16S rRNA marker gene was detected in the metagenome, other coding sequences and genome fragments were annotated as taxa represented in the tree.

 

Fig.1. Phylogenetic tree based on DNA alignment of the fragment of the 16S rRNA gene. ASVs obtained from DNA-metabarcoding data are highlighted in red, fragments of 16S rRNA gene from the metagenome are in blue, and nearest neighbors by BLASTn-search are in black color

 

Metabolic functions of bacteria in the Tychonema sp. BBK16 biofilm

According to the KEGG (Kyoto Encyclopedia of Genes and Genomes) database, a total of 2387 different functional orthologs (KO) were identified in the biofilm-consortium. We presented 8 bins to describe the bacterial functions (Fig.2). The analysis of the main pathways of carbon metabolism showed that the most significant participants in the biofilm community are the metabolism of carbohydrates and amino acids; a large part is represented by the categories of signaling and cellular processes, nucleotide and energy metabolism, membrane transport, and the metabolism of cofactors and vitamins. See Supplementary material (S1) for additional analysis - comparison of predicted functions of microorganisms and actual functional genes.

 

Fig.2. Abundance heatmap of different metabolic processes in the biofilm of Tychonema sp. BBK16

 

Functional annotation of the assembled genomes identified key metabolic markers of biofilm community members (Table 3). The ability to fix inorganic carbon was confirmed by the presence of the enzymes of the CBB cycle in the microorganisms Tychonema sp. BBK16 and Hydrogenophaga sp., although in the latter this process is facultative and occurs when there is a deficit of organic matter in the medium. The ability to use solar energy is confirmed by the presence of bacteriochlorophyll, carotenoid synthesis genes, and photosystem II reaction center enzymes in the bacterium Bosea sp.

 

Table 3. Microbial processes in the biofilm of Tychonema sp. BBK16

Bacterium

Metabolism

Confirmative genes

Tychonema sp. BBK16

Autotroph. Uses nitrate, nitrite, ammonia and urea. Assimilates phosphates of inorganic and organic compounds, synthesizes alkaline phosphatase. Utilizes sulfates and thiosulphates.

rbcL, prkB, amt, nrtA, narB, nirA, glnA, ureABC , urtABCE, pstB, pstS phoD, cysU, cysW

Tahibacter sp.

Organotroph. Uses phosphates, phosphonates, and ammonia, hydrolyses glycans. Denitrification.

argH, amt, phnA, pstBS, nirK, norB

Hydrogenophaga sp.

Chemoorganotroph/chemolithoautotroph. Oxidises hydrogen as a source of energy and CO2 or simple organic matter as a carbon source. Preferred nitrogen source is urea, glutamate. Able to degrade oligosaccharides. Transports nitrate and phosphate. Participates in thiosulfate oxidation by the periplasmic SOX enzyme complex.

rbcL, prkB, soxABCDXZ, urtABCE ureABC, urea carboxylase, amt, asnB, cysU, cysW

Devosia sp.

Organotroph. Utilizes organic and inorganic sources of nitrogen and phosphorus, detoxifies urea by decomposition or incorporation into organic compounds. Contains a large number of transporters of oligopeptides and simple organic matter, modifies aromatic compounds. Possesses a powerful chemotaxis system.

glgX, nasC, nasABED, nrtABC, oppABCDF, mppA, phnСIJMP, pstBS, urtAE, ureaABC, urea carboxylase, vanA

Aminobacter sp.

Organotroph. Mobile due to piles, hydrolyses polysaccharides, catechols, glycogen, urea, assimilates nitrate, phosphate, sulfate, thiosulphate, denitrifier. Oxidizes carbon monoxide to carbon dioxide. Methylotroph involved in the degradation of methylamines (serine pathway).

amt, argH, glgX, dmpB, xylE, nasABED, nosZ, nrtABC, pstBS, phnACDIJKLMPWY; soxABG, cysU, cysW, urtABCE, ureABC, gmaS, mgsABC, mgdABCD, coxMLS, cutML

Paucibacter sp.

Aerobic heterotroph capable of hydrolysing complex polysaccharides, a companion bacterium to cyanobacteria in nature and cultures, utilizes nitrate, phosphate, sulfate, thiosulphate. Possible denitrification.

amt, argH, narGHI, nasABED, nrtABC, phoD, pstBS, phnDEX, soxBCDXZ, cysU, cysW, susA, coxMLS, cutML

Bosea sp.

Anoxygenic aerobic phototroph, contains bacteriochlorophyll a and photosystem II. Assimilates nitrate and phosphate.

amt, glgX, argH, bchM, chlM, bchO, bchX,Y,Z, pufM,L, nrtAC, nasDF, urtABC, pstBS, phnCIJKMPXY

Sphingomonas sp.

Universal organotroph capable of carbon autotrophy, fixes carbon dioxide using an alternative carbon pathway, the glyoxylate cycle. Hydrolyses polysaccharides. Assimilates phosphates and phosphonates, produces alkaline phosphatase for phosphorus production from organic compounds.

amt, argH, mct, phoD, pstBS

 

A complex cycle of biogenic elements – phosphorus, nitrogen, and sulfur – occurs in the biofilm. Thus, the source of phosphorus is phosphates, which in a closed ecosystem are produced by the activity of the enzyme alkaline phosphatase of the microorganisms Tychonema, Paucibacter, and Sphingomonas. Most bacteria have phosphonate transport systems. These organic phosphorus compounds are common in natural ecosystems and were once the first sources of phosphorus for ancient microorganisms (McGrath et al., 2013). Phosphonate transport systems can also serve as phosphate transporters (Stasi et al., 2019).

Traditionally, the relationship between autotroph and heterotrophic bacteria is considered as a metabolic symbiosis “carbon in exchange for nitrogen” implying that bacteria fix atmospheric nitrogen. Thus, a microbial community represented by the filamentous cyanobacterium Microcoleus vaginatus and strains of Actinobacteria and Proteobacteria, many of which were atmospheric nitrogen fixers, was isolated from arid soils (Nelson et al., 2021). In our case, nitrogen fixation was not detected, which was confirmed by the predictive method (PICRUSt2) and the absence of marker genes for the process in the genome (Supplementary materials, S2, S3). Genes responsible for denitrification (nitrogen removal) were identified in three members of a consortium related to Proteobacteria (Aminobacter, Tahibacter, and probably Paucibacter). According to genomic characteristics, the main sources of nitrogen for all members of the consortium may be ammonium, nitrate, nitrite, and urea (as a metabolite and as a decomposition product of dead biomass). Genes related to ammonium transport and ammonium assimilation enzymes were detected in all consortium members. Genes coding for urea transport and its degradation to ammonium were revealed in cyanobacteria and heterotrophic bacteria, except Sphingomonas, Paucibacter, and Tahibacter.

Thus, all metabolic processes are necessary to keep the whole community alive. The autotrophic cyanobacterium Tychonema sp. BBK16, as well as the facultative autotrophs Hydrogenophaga and Sphingomonas, forms organic matter for bacteria. However, it has genes for organic matter assimilation being a mixotroph (Evseev et al., 2023). Facultative autotrophy of hydrogen-oxidizing bacteria is an inducible process; they are successful organotrophs in the presence of simple organic matter (Zavarzin, 1972). Bacteria Aminobacter, Tahibacter, Devosia, and Paucibacter are able to consume polysaccharide substances, which are abundant in cyanobacterial biofilm. Aminobacter has the most extensive metabolism being an active polysaccharide degrader, methylotroph, denitrifier, and, as well as Paucibacter, a supplier of hydrogen for the hydrogen-oxidizing bacteria. Hydrogen is also released during the anoxygenic photosynthesis of the bacterium Bosea. Devosia are able to inhabit places rich in organic compounds, such as wastewater and biofilms, due to transport proteins - permeases, which uptake short peptides of various amino acid compositions serving as a source of carbon and nitrogen (Talwar et al., 2020). During the phosphate depletion period, Sphingomonas, Tychonema, and Paucibacter additionally produce alkaline phosphatase to hydrolyze phosphate-containing organic matter. Cyanobacteria Tychonema sp. BBK16 is dependent on other bacteria because the system is closed and nitrate and nitrite cannot be provided from outside, while ammonium is released by the bacterial decomposition of nitrogen-containing polysaccharides and glycosides, proteins and amino acids.

It was previously suggested that the microbiome associated with cyanobacteria represents an “ecological footprint” of the habitat (Cornet et al., 2018). We assume that the microbial consortium studied with Tychonema is represented by typical inhabitants of substrates rich in organic and has all necessary for this purpose: enzymes of denitrification, methylotrophy, hydrolysis of aromatic compounds and complex polysaccharides, as well as organic compounds of nitrogen, phosphorus, and sulfur. Some of the genera have been described such as Hydrogenophaga, Methylophilus and Pseudomonas are found in the cultivated diatoms of Lake Baikal (Mikhailov et al., 2018). In the article also showed that the Nocardioides are satellites of Baikal cultivated diatom algae.

4. Conclusion

We have demonstrated that Proteobacteria are the main symbionts of the filamentous cyanobacterium Tychonema sp. BBK16 in vitro. The dominant genera were Hydrogenophaga, Sphingomonas, Paucibacter, Aminobacter, Devosia, and Tahibacter. The studied biofilm community showed processes of oxygenic and anoxygenic photosynthesis (phototrophy and photoheterotrophy), facultative carbon dioxide fixation involving the glyoxylate pathway and SBB, methylotrophy, degradation of polysaccharides and aromatic compounds to oligosaccharides, organic acids, aldehydes, peptides, and monosaccharides, and organic polymers of nitrogen and phosphorus.

Acknowledgments

The authors are grateful to Y.S. Bukin, O.N. Pavlova, S.V. Bukin, I.S. Mikhailov, Y.R. Zakharova for their valuable discussions and help. Metagenomic sequencing using DNA nanoball sequencing (MGI) technology was supported by Helicon Company (Moscow). The research is funded by State Project 0279-2021-0015, “Viral and bacterial communities as the basis for the stable functioning of freshwater ecosystems...”.

Conflicts of Interest

The authors declare no conflicts of interests.

×

Sobre autores

A. Krasnopeev

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: krasnopeev@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033

I. Tikhonova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: krasnopeev@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033

G. Podlesnaya

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: krasnopeev@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033

S. Potapov

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: krasnopeev@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033

A. Gladkikh

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: krasnopeev@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033

M. Suslova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: krasnopeev@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033

I. Lipko

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: krasnopeev@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033

E. Sorokovikova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: krasnopeev@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033

O. Belykh

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: krasnopeev@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033

Bibliografia

  1. Aguilar P., Dorador C., Vila I. et al. 2019. Bacterial Communities associated With Spherical Nostoc Macrocolonies. Frontiers in Microbiology 10: 483. doi: 10.3389/fmicb.2019.00483
  2. Azam F., Fenchel T., Field J. et al. 1983. The ecological role of water-сolumn microbes in the sea. Marine Ecology – Progress Series 10: 257-263. doi: 10.3354/meps010257
  3. Berg K., Lyra C., Sivonen K. et al. 2009. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME Journal 3:314–325. doi: 10.1038/ismej.2008.110
  4. Buchfink B., Reuter K., Drost H.G. 2021. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods 18: 366–368. doi: 10.1038/s41592-021-01101-x
  5. Callahan B., McMurdie P., Rosen M. et al. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13: 581–583. doi: 10.1038/nmeth.3869
  6. Chklovski A., Parks D.H., Woodcroft B.J. et al. 2022. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nature Methods 20:1203–1212. doi: 10.1101/2022.07.11.499243
  7. Chun S.J., Cui Y., Ko S.R. et al. 2017. Acidovorax lacteus sp. nov., isolated from a culture of a bloom-forming cyanobacterium Microcystis sp. Antonie van Leeuwenhoek 110: 1199–1205. doi: 10.1007/s10482-017-0892-9
  8. Cornet L., Bertrand A., Hanikenne M. et al. 2018. Metagenomic assembly of new subpolar Cyanobacteria and their associated microbiome from non-axenic cultures. Microbial Genomics 4:e000212. 1. doi: 10.1099/mgen.0.000212
  9. Danecek P., Bonfield J., Liddle J. et al. 2021. Twelve years of SAMtools and BCFtools, GigaScience. 10:1-4. doi: 10.1093/gigascience/giab008
  10. Drummond A.J., Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. doi: 10.1186/1471-2148-7-214
  11. Evseev P., Tikhonova I., Krasnopeev A. et al. 2023. Tychonema sp. BBK16 characterisation: lifestyle, phylogeny and related phages. Viruses 15: 442. doi: 10.3390/v15020442
  12. Ewels Ph., Magnusson M., Lundin S. et al. 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. doi: 10.1093/bioinformatics/btw354
  13. Garner R.E., Kraemer S.A., Onana V.E. et al. 2023. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nature Microbiology 8:1920–1934. doi: 10.1038/s41564-023-01435-6
  14. Heng L., Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform, Bioinformatics 25:1754–1760. doi: 10.1093/bioinformatics/btp324
  15. Hyatt D., Chen G.L., Locascio P.F. et al. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119
  16. Kanehisa M., Sato Y., Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG Tools for functional characterization of genome and metagenome sequences. Molecular Biology 428(4): 726-731. doi: 10.1016/j.jmb.2015.11.006
  17. Kang D.D., Li F., Kirton E. et al. 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 26:7:e7359. doi: 10.7717/peerj.7359
  18. McGrath J., Chin J., Quinn J. 2013. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nature Microbiology 11:412–419. doi: 10.1038/nrmicro3011
  19. Menzel P., Ng K., Krogh A. 2016. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature Communications 7:11257. doi: 10.1038/ncomms11257
  20. Mikhailov I.S., Zakharova Y.R., Volokitina N.A. et al. 2018. Bacteria associated with planktonic diatoms from Lake Baikal. Acta Biologica Sibirica, 4(4):89-94. doi: 10.14258/abs.v4.i4.4880
  21. Nelson C., Giraldo-Silva A., Garcia-Pichel F. 2021. A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium Microcoleus vaginatus. ISME Journal 15: 282–292. doi: 10.1038/s41396-020-00781-1
  22. Park M., Kim M., Park T. 2021. Effect of cryopreservation on the bacterial community structure of filamentous cyanobacteria Trichormus variabilis (Nostocales, Cyanobacteria). Cryobiology 98:87–95. doi: 10.1016/j.cryobiol.2020.12.003
  23. Prjibelski A., Antipov D., Meleshko D. et al. 2020. Using SPAdes de novo assembler. Current protocols in bioinformatics 70(1): 102. doi: 10.1002/cpbi.102
  24. R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  25. Seemann T. 2013. Barrnap 0.9: rapid ribosomal RNA prediction.
  26. Shaw C., Brooke C., Hawley E. et al. 2020. Phototrophic co-cultures from extreme environments: community structure and potential value for fundamental and applied research. Frontiers in Microbiology 11: 572131. doi: 10.3389/fmicb.2020.572131
  27. Sievers F., Wilm A., Dineen D. et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology 7: 539. doi: 10.1038/msb.2011.75
  28. Stasi R., Neves H.I., Spira B. 2019. Phosphate uptake by the phosphonate transport system PhnCDE. BMC Microbiology 19:79. doi: 10.1186/s12866-019-1445-3
  29. Talwar C., Nagar S., Kumar R. et al. 2020. Defining the environmental adaptations of genus Devosia: insights into its expansive short peptide transport system and positively selected genes. Scientific Reports 10: 1151. doi: 10.1038/s41598-020-58163-8
  30. Tan B.F., Te S.H., Boo C.Y. et al. 2016. Insights from the draft genome of the subsection V (Stigonematales) cyanobacterium Hapalosiphon sp. Strain MRB220 associated with 2-MIB production. Stand in Genomic Science 11: 58. doi: 10.1186/s40793-016-0175-5
  31. Thorat V., Tiwarekar B., Kirdat K. et al. 2022. Hydrogenophaga crocea sp. nov. associated with cyanobacterial mat isolated from farmland mud. Archives of Microbiology 204: 265. doi: 10.1007/s00203-022-02865-2
  32. Tikhonova I.V., Kuzmin A.V., Sorokovikova E.G. et al. 2022. Microcystin-producing cyanobacteria Tychonema sp. from Biofilms of Lake Baikal. Chemistry for Sustainable Development. 30: 415-423. doi: 10.15372/CSD2022399
  33. Woodhouse J.N., Ziegler J., Grossart H.-P. et al. 2018. Cyanobacterial community composition and bacteria–bacteria interactions promote the stable occurrence of particle-associated bacteria. Frontiers in Microbiology 9:777. doi: 10.3389/fmicb.2018.00777
  34. Zavarzin G.A. 1972. Hydrogen bacteria. In: Lithotrophic microorganisms. Moscow. pp. 54-99. (in Russian)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig.1. Phylogenetic tree based on DNA alignment of the fragment of the 16S rRNA gene. ASVs obtained from DNA-metabarcoding data are highlighted in red, fragments of 16S rRNA gene from the metagenome are in blue, and nearest neighbors by BLASTn-search are in black color

Baixar (797KB)
3. Fig.2. Abundance heatmap of different metabolic processes in the biofilm of Tychonema sp. BBK16

Baixar (378KB)
4. Supplementary material
Baixar (376KB)

Declaração de direitos autorais © Krasnopeev A.Y., Tikhonova I.V., Podlesnaya G.V., Potapov S.A., Gladkikh A.S., Suslova M.Y., Lipko I.A., Sorokovikova E.G., Belykh O.I., 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».